Your SlideShare is downloading. ×
0
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Teoria de Grafos. Conceptos básicos.
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Teoria de Grafos. Conceptos básicos.

53,971

Published on

Conceptos básicos de la Teoría de Grafos

Conceptos básicos de la Teoría de Grafos

Published in: Education
4 Comments
18 Likes
Statistics
Notes
No Downloads
Views
Total Views
53,971
On Slideshare
0
From Embeds
0
Number of Embeds
11
Actions
Shares
0
Downloads
1,688
Comments
4
Likes
18
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. 1Ing. Nabor Chirinos
  • 2. 2Prof. Nabor Chirinos LAS APLICACIONES MÁS IMPORTANTES DE LOS GRAFOS SON LAS SIGUIENTES: · RUTAS ENTRE CIUDADES. · DETERMINAR TIEMPOS MÁXIMOS Y MÍNIMOS EN UN PROCESO. · FLUJO Y CONTROL EN UN PROGRAMA.
  • 3. Prof. Nabor Chirinos 3 Grafo: Para las matemáticas y las ciencias de la computación, un grafo es el principal objeto de estudio de la teoría de grafos. De esta forma, un grafo se representa gráficamente como un conjunto de puntos (llamados vértices o nodos), unidos por líneas (aristas). Los grafos permiten estudiar las interrelaciones entre unidades que se encuentran en interacción. Son diagramas que si se interpretan en forma adecuada proporcionan información, como por ejemplo los mapas, diagramas de circuitos o de flujos, entre otros
  • 4. Prof. Nabor Chirinos 4 Un grafo está compuesto por dos conjuntos finitos. Un conjunto de |A| aristas, Un conjunto de |V| vértices J es la relación de incidencia, que asocia a cada elemento de |A| un par de elementos de |V| Se denota G= { A, V, j}
  • 5. Prof. Nabor Chirinos 5 Vértices: Son los objetos representados por punto dentro del grafo Aristas: son las líneas que unen dos vértices Aristas Adyacentes: dos aristas son adyacentes si convergen sobre el mismo vértice Aristas Múltiples o Paralelas: dos aristas son múltiples o paralelas si tienen los mismos vértices en común o incidente sobre los mismos vértices Lazo: es una arista cuyos extremos inciden sobre el mismo vértice
  • 6. Prof. Nabor Chirinos 6 UNA ARISTA ES INCIDENTE A UN VÉRTICE SI ÉSTA LO UNE A OTRO VÉRTICE. La arista a, es Incidente en los Vértices A Y B.
  • 7. Prof. Nabor Chirinos 7 Vértice Aislado: Es un vértice de grado cero 4 1 2 3 b a c Vértice Pendiente: Es aquel grafo que contiene sólo una arista, es decir tiene grado 1
  • 8. Prof. Nabor Chirinos 8 Cruce: Son intersecciones de las aristas en puntos diferentes a los vértices Grafo Sencillo o Simple: Se dice que un Grafo G es simple si no tiene aristas cíclicas y existe una sola arista entre dos vértices. También puede ser aquel que no contiene lazos, ni aristas paralelas o dirigidas. 41 2 3 b a c d e f 41 2 3 b a d c
  • 9. Prof. Nabor Chirinos 9 Grafo Completo: Un grafo es completo si cada vértice tiene un grado igual a n-1, donde n es el número de vértice que componen el grafo. Para saber el número máximo de aristas que posee un grafo completo se aplica la formula. A=(n*(n-1))/2
  • 10. Prof. Nabor Chirinos 10 Existen dos tipos de grafos los no dirigidos y los dirigidos. No dirigidos: son aquellos en los cuales los lados no están orientados (no son flechas). Cada lado se representa entre paréntesis, separando sus vértices por comas, y teniendo en cuenta (vi,vj)=(vj,vi). Figuras 1 y 2. Dirigidos: son aquellos en los cuales los lados están orientados (flechas). Cada lado se representa entre ángulos, separando sus vértices por comas y teniendo en cuenta <vi ,vj>=<Vj ,vi>. En grafos dirigidos, para cada lado <a,b>, a, el cual es el vértice origen, se conoce como la cola del lado y b, el cual es el vértice destino, se conoce como cabeza del lado. Figura 3
  • 11. Prof. Nabor Chirinos 11 Grafo no Simple: Grafo no dirigido que tiene lados paralelos y lazos. v1 v2 v3 e1 e2 e3 e4 e5 e1 y e2 : aristas paralelas e3 y e4 : aristas paralelas e5 : lazo
  • 12. Prof. Nabor Chirinos 12
  • 13. Prof. Nabor Chirinos 13 Grado o Valencia de un Vértice: Es el número de aristas que inciden sobre un vértice 1 2 3 4 5 a b e d c f g h i j G(1)=6 g(2)=3 g(3)=3 g(4)=3 g(5)=3
  • 14. Prof. Nabor Chirinos 14 Grado Regular: Un grafo G simple, se dice que es K-regular, si todo vértice de G incide exactamente K-aristas, donde K es una constante. Es decir, tiene igual número de arista en todos sus vértices. 4 1 2 3 b a c d e f
  • 15. Prof. Nabor Chirinos 15 CICLO DE EULER Recorrer todas las aristas del grafo sin repetirlas. a b c d e f a, b, c, d, e, d, f, e, c, a Ciclo de Euler Encuentre el ciclo de Euler en el siguiente Grafo: a b c d e f g h i j
  • 16. Prof. Nabor Chirinos 16 CICLO DE HAMILTON Recorrer todos los vértices del grafo sin repetirlos, excepto el V0 y Vn que son el mismo. a, e, b, g, c, h, j, f, i, d, a Ciclo de Hamilton Encuentre el ciclo de Hamilton en el siguiente Grafo: a b c d e f g h i j a b c d e f g
  • 17. Prof. Nabor Chirinos 17 Una matriz de adyacencia es aquella que muestra de la forma mas rustica cómo está compuesto un grafo, esto es que dónde se coloque un uno se representa como una arista que una los dos nodos y con cero donde no hay unión. Nota: Se puede obtener el Grafo a partir de la matriz de Adyacencia.
  • 18. Prof. Nabor Chirinos 18 •ES CUADRADA Y SIMÉTRICA •LA SUMA DE CADA FILA (O COLUMNA) ES EL GRADO DEL VÉRTICE CORRESPONDIENTE •LA DIAGONAL ES NULA
  • 19. Prof. Nabor Chirinos 19 Una matriz que está compuesta por unos y ceros, en la que se representan los nodos unidos por las aristas. Cada arista une dos y nada más que dos nodos. En general, las matrices de incidencia no son usadas computacionalmente, pero sirven como ayuda conceptual. PROPIEDADES: •No tiene por qué ser ni cuadrada ni simétrica
  • 20. Prof. Nabor Chirinos 20
  • 21. Prof. Nabor Chirinos 21 Obtenga la Matriz de Adyacencia partiendo del siguiente Grafo: Obtenga la Matriz de Incidencia partiendo del siguiente Grafo: a b c d e .a b c d e f g e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 Ejercicios:

×