HISTORY - FRP Fiber Reinforced Materials <ul><li>Straw in Clay (Brick, Roof, Walls) </li></ul><ul><li>Glass Fibers in Conc...
HISTORY - FRP POST WW-II APPLICATIONS <ul><li>Boat Hulls  </li></ul><ul><li>Radomes </li></ul><ul><li>Minesweeping Vessels...
HISTORY - FRP POST WW-II APPLICATIONS-2 <ul><li>Pressure Vessels </li></ul><ul><li>Submarine Parts </li></ul><ul><li>Rocke...
HISTORY - FRP POST WW-II DOMESTIC APPLICATIONS <ul><li>Bath Tubs </li></ul><ul><li>Covers </li></ul><ul><li>Railings </li>...
HISTORY - FRP POST WW-II RECREATIONAL USES <ul><li>Fishing Rods </li></ul><ul><li>Tennis Rackets </li></ul><ul><li>Ski Equ...
FRP CONSUMPTION (IN MILLION POUNDS) Source:  SPI CI, April 99
FRP - CIVIL STRUCTURES CURRENT FIELD ACTIVITIES <ul><li>Pedestrian Bridges </li></ul><ul><li>Highway Bridges </li></ul><ul...
FRP TECHNOLOGY CHARACTERISTICS <ul><li>High Strength </li></ul><ul><li>High Resistance to Corrosion and Chemical </li></ul...
FRP TECHNOLOGY ADVANTAGES <ul><li>Ease in Fabrication, Manufacturing, Handling, and Erection </li></ul><ul><li>Year-Round ...
FRP TECHNOLOGY DISADVANTAGES -1 <ul><li>High First Cost </li></ul><ul><li>Creep and Shrinkage </li></ul><ul><li>Potential ...
FRP TECHNOLOGY DISADVANTAGES - 2 <ul><li>Global and Local Buckling </li></ul><ul><li>Aerodynamic Instability With Lightwei...
FRP TECHNOLOGY PUBLIC CONCERNS <ul><li>Fire/Flame Resistance </li></ul><ul><li>Smoke Toxicity </li></ul><ul><li>Fuel Spill...
MANUFACTURING PROCESS COMMON TO CIVIL APPLICATIONS <ul><li>Pultrusion </li></ul><ul><li>Filament Winding </li></ul><ul><li...
WHAT IS FRP COMPOSITES COMPONENTS <ul><li>Fiber Reinforcement </li></ul><ul><li>Resin Matrix </li></ul><ul><li>***(Fiber-M...
FRP TECHNOLOGY MECHANICAL PROPERTIES <ul><li>Fiber Types </li></ul><ul><li>Fiber Orientations </li></ul><ul><li>Fiber Arch...
FRP TECHNOLOGY FIBER TYPES <ul><li>Glass </li></ul><ul><li>Aramid </li></ul><ul><li>Carbon (Graphite) </li></ul><ul><li>Bo...
FRP TECHNOLOGY FIBER OREIENTATION <ul><li>0 Degree (Parallel - Warp) </li></ul><ul><li>90 Degrees (Transverse - Weft) </li...
FRP TECHNOLOGY FIBER ARCHITECTURE <ul><li>Braiding (2D & 3D) </li></ul><ul><li>Knitting </li></ul><ul><li>Weaving </li></u...
FRP TECHNOLOGY CARBON FIBER <ul><li>Three Polymer Precursors: *Polyacrylonitrile (PAN)  *Rayon    *Pitch </li></ul><ul><li...
FRP TECHNOLOGY ARAMID FIBER <ul><li>Aromatic Polyamides </li></ul><ul><li>Kevlar 29 </li></ul><ul><li>Kevlar 49 </li></ul>...
FRP -TYPICAL PROPERTIES Source: Tonen Energy Corp
FRP BRIDGE TECHNOLOGY FIBER PROPERTIES fiber stress (Gpa) fiber strain (%) 1 2 3 4 1 2 3 4 E-glass (350 ksi) Aramid (500 k...
FRP TECHNOLOGY RESIN SYSTEM <ul><li>Thermoplastics  (melts when heated, solidifies when cooled, no permanent curing) </li>...
FRP TECHNOLOGY RESIN FORMULATIONS <ul><li>Viscosity </li></ul><ul><li>Reactivity </li></ul><ul><li>Resiliency </li></ul><u...
FRP TECHNOLOGY RESIN TYPES <ul><li>Unsaturated Polyesters </li></ul><ul><li>Epoxies </li></ul><ul><li>Vinyl Esters </li></...
FRP - RESIN SYSTEM UNSATURATED POLYESTERS - 1 <ul><li>75% Resins Used in USA </li></ul><ul><li>Condensation Polymerization...
FRP - RESIN SYSTEM UNSATURATED POLYESTERS - 2 <ul><li>Dimensional Stability </li></ul><ul><li>Affordable Cost </li></ul><u...
FRP - RESIN SYSTEM EPOXIES <ul><li>Glycidyl Ethers and Amines </li></ul><ul><li>Customized Properties </li></ul><ul><li>Li...
FRP - RESIN SYSTEM VINYL ESTERS <ul><li>Good Workability </li></ul><ul><li>Fast Curing </li></ul><ul><li>High Performance ...
FRP - RESIN SYSTEM POLYURETHANES <ul><li>Polyisocyanate & Polyol </li></ul><ul><li>Reaction or Reinforced Injection Moldin...
FRP - RESIN SYSTEM PHENOLICS <ul><li>Phenols & Formaldehyde </li></ul><ul><li>Resole - Alkaline (F/P > 1.0)  (Cured by Hea...
FRP TECHNOLOGY  FILLERS <ul><li>Control Composites’ Cost </li></ul><ul><li>Improved Mechanical Properties </li></ul><ul><l...
FRP TECHNOLOGY FILLER TYPES <ul><li>Calcium Carbonate </li></ul><ul><li>Kaolin </li></ul><ul><li>Alumina Trihydrate </li><...
FRP TECHNOLOGY ADDITIVES <ul><li>Improved Material Properties </li></ul><ul><li>Aesthetics </li></ul><ul><li>Enhanced Work...
FRP TECHNOLOGY ADDITIVE TYPES <ul><li>Catalysts </li></ul><ul><li>Promoters </li></ul><ul><li>Inhibitors </li></ul><ul><li...
FRP TECHNOLOGY SMART MATERIALS <ul><li>Innovative Design  and  Application </li></ul><ul><li>Customized Product  for High ...
FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul...
FRP - DESIGN AVOID ABRUPT THICKNESS <ul><li>Inefficient By Thickness </li></ul><ul><li>Avoid Stress Risers </li></ul><ul><...
FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul...
FRP - DESIGN GEOMETRICAL SHAPES <ul><li>Low Stresses </li></ul><ul><li>Optimize Design - Balance Criteria (Stress, Deflect...
FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul...
FRP - DESIGN HYBRID SYSTEMS <ul><li>High Strength in Composites </li></ul><ul><li>High Stiffness in Conventional Materials...
FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul...
FRP - DESIGN BONDED JOINTS <ul><li>Epoxy Bonded Assemblies </li></ul><ul><li>Epoxy Bonded Joints </li></ul><ul><li>Bonded ...
FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul...
FRP - DESIGN CONNECTION DETAILS <ul><li>Local Stress Flow </li></ul><ul><li>Overall Load Path </li></ul><ul><li>Weak Links...
FRP TECHNOLOGY FUTURE DEVELOPMENTS <ul><li>T 2  from Aerospace Industry - CE transition </li></ul><ul><li>Bridge structure...
FRP TECHNOLOGY CONCLUSION - 1 <ul><li>Continue R & D Activities </li></ul><ul><li>Training </li></ul><ul><li>Government & ...
FRP TECHOLOGY CONCLUSION - 2 <ul><li>AASHTO, ASCE, ACI, PCI,  </li></ul><ul><li>NSF, NIST (ATP), ISCC </li></ul><ul><li>Eu...
Upcoming SlideShare
Loading in …5
×

composites

1,876
-1

Published on

fiber reinforced composites

Published in: Education, Business, Lifestyle
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,876
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
135
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • 5
  • 11
  • 9
  • 11
  • 2
  • 11
  • 21
  • 22
  • composites

    1. 1. HISTORY - FRP Fiber Reinforced Materials <ul><li>Straw in Clay (Brick, Roof, Walls) </li></ul><ul><li>Glass Fibers in Concrete </li></ul><ul><li>Glass Fibers in Polymer </li></ul>
    2. 2. HISTORY - FRP POST WW-II APPLICATIONS <ul><li>Boat Hulls </li></ul><ul><li>Radomes </li></ul><ul><li>Minesweeping Vessels </li></ul><ul><li>Bath Tubs </li></ul><ul><li>Covers </li></ul>HS, CR, LW - New Developments in Filament Winding and Pultrusion
    3. 3. HISTORY - FRP POST WW-II APPLICATIONS-2 <ul><li>Pressure Vessels </li></ul><ul><li>Submarine Parts </li></ul><ul><li>Rocket Shells </li></ul><ul><li>Aircraft Components </li></ul><ul><li>Automobile Bodies & Parts </li></ul>
    4. 4. HISTORY - FRP POST WW-II DOMESTIC APPLICATIONS <ul><li>Bath Tubs </li></ul><ul><li>Covers </li></ul><ul><li>Railings </li></ul><ul><li>Housing Components </li></ul><ul><li>Architectural Components </li></ul><ul><li>Ladders </li></ul><ul><li>Electrical Equipment </li></ul>
    5. 5. HISTORY - FRP POST WW-II RECREATIONAL USES <ul><li>Fishing Rods </li></ul><ul><li>Tennis Rackets </li></ul><ul><li>Ski Equipment </li></ul><ul><li>Golf Clubs </li></ul><ul><li>Recreation Boats </li></ul><ul><li>Skates </li></ul>
    6. 6. FRP CONSUMPTION (IN MILLION POUNDS) Source: SPI CI, April 99
    7. 7. FRP - CIVIL STRUCTURES CURRENT FIELD ACTIVITIES <ul><li>Pedestrian Bridges </li></ul><ul><li>Highway Bridges </li></ul><ul><li>Seismic Retrofit Columns </li></ul><ul><li>Bridge Strengthening </li></ul><ul><li>Bridge Repairs </li></ul>
    8. 8. FRP TECHNOLOGY CHARACTERISTICS <ul><li>High Strength </li></ul><ul><li>High Resistance to Corrosion and Chemical </li></ul><ul><li>High Resistance to Elevated Temperature </li></ul><ul><li>High Resistance to Abrasion </li></ul><ul><li>Toughness </li></ul><ul><li>Fatigue </li></ul><ul><li>Light Weight </li></ul>
    9. 9. FRP TECHNOLOGY ADVANTAGES <ul><li>Ease in Fabrication, Manufacturing, Handling, and Erection </li></ul><ul><li>Year-Round Construction </li></ul><ul><li>Short Project Time Delivery </li></ul><ul><li>High Performance </li></ul><ul><li>Durability (Jury Still Out) </li></ul><ul><li>Excellent Strength-to-Weight Ratio </li></ul>
    10. 10. FRP TECHNOLOGY DISADVANTAGES -1 <ul><li>High First Cost </li></ul><ul><li>Creep and Shrinkage </li></ul><ul><li>Potential for Environmental Degradation (Alkalis’ Attack, UV Radiation Exposure, Moisture Absorption, etc.) </li></ul><ul><li>Consistency of Material Properties </li></ul>
    11. 11. FRP TECHNOLOGY DISADVANTAGES - 2 <ul><li>Global and Local Buckling </li></ul><ul><li>Aerodynamic Instability With Lightweight </li></ul><ul><li>Requires Highly Trained Specialists </li></ul><ul><li>Lack of Standards and Design Guides </li></ul><ul><li>Limited Joining and Connection Technology (Adhesive joints, fasteners) </li></ul>
    12. 12. FRP TECHNOLOGY PUBLIC CONCERNS <ul><li>Fire/Flame Resistance </li></ul><ul><li>Smoke Toxicity </li></ul><ul><li>Fuel Spills </li></ul><ul><li>Vandalism/Theft </li></ul><ul><li>Inspectibility </li></ul><ul><li>Repairability </li></ul>
    13. 13. MANUFACTURING PROCESS COMMON TO CIVIL APPLICATIONS <ul><li>Pultrusion </li></ul><ul><li>Filament Winding </li></ul><ul><li>Layup </li></ul>
    14. 14. WHAT IS FRP COMPOSITES COMPONENTS <ul><li>Fiber Reinforcement </li></ul><ul><li>Resin Matrix </li></ul><ul><li>***(Fiber-Matrix Interphases)*** </li></ul><ul><li>Fillers </li></ul><ul><li>Additives </li></ul>
    15. 15. FRP TECHNOLOGY MECHANICAL PROPERTIES <ul><li>Fiber Types </li></ul><ul><li>Fiber Orientations </li></ul><ul><li>Fiber Architecture </li></ul><ul><li>Fiber Volume (30-70%) </li></ul>
    16. 16. FRP TECHNOLOGY FIBER TYPES <ul><li>Glass </li></ul><ul><li>Aramid </li></ul><ul><li>Carbon (Graphite) </li></ul><ul><li>Boron </li></ul><ul><li>Polyvinyl alcohol (PVA) (Available in Japan) </li></ul>
    17. 17. FRP TECHNOLOGY FIBER OREIENTATION <ul><li>0 Degree (Parallel - Warp) </li></ul><ul><li>90 Degrees (Transverse - Weft) </li></ul><ul><li>Between 0 and 90 Degrees (Biased) </li></ul><ul><li>(e.g. 0/45/90/-45/0) </li></ul>
    18. 18. FRP TECHNOLOGY FIBER ARCHITECTURE <ul><li>Braiding (2D & 3D) </li></ul><ul><li>Knitting </li></ul><ul><li>Weaving </li></ul><ul><li>Stitched </li></ul><ul><li>Chopped </li></ul>
    19. 19. FRP TECHNOLOGY CARBON FIBER <ul><li>Three Polymer Precursors: *Polyacrylonitrile (PAN) *Rayon *Pitch </li></ul><ul><li>Anisotropic Materials </li></ul><ul><li>Linear Elastic to Failure </li></ul><ul><li>Failure by Rupture </li></ul>
    20. 20. FRP TECHNOLOGY ARAMID FIBER <ul><li>Aromatic Polyamides </li></ul><ul><li>Kevlar 29 </li></ul><ul><li>Kevlar 49 </li></ul><ul><li>Anisotropic Materials </li></ul><ul><li>Linear Elastic to Failure </li></ul><ul><li>Failure by Rapture </li></ul>
    21. 21. FRP -TYPICAL PROPERTIES Source: Tonen Energy Corp
    22. 22. FRP BRIDGE TECHNOLOGY FIBER PROPERTIES fiber stress (Gpa) fiber strain (%) 1 2 3 4 1 2 3 4 E-glass (350 ksi) Aramid (500 ksi) Carbon (600 ksi)
    23. 23. FRP TECHNOLOGY RESIN SYSTEM <ul><li>Thermoplastics (melts when heated, solidifies when cooled, no permanent curing) </li></ul><ul><li>Thermosets (cures permanently by irreversible cross linking at elevated temp.) </li></ul>
    24. 24. FRP TECHNOLOGY RESIN FORMULATIONS <ul><li>Viscosity </li></ul><ul><li>Reactivity </li></ul><ul><li>Resiliency </li></ul><ul><li>High Deflection Temperature (HDT) </li></ul>
    25. 25. FRP TECHNOLOGY RESIN TYPES <ul><li>Unsaturated Polyesters </li></ul><ul><li>Epoxies </li></ul><ul><li>Vinyl Esters </li></ul><ul><li>Polyurethanes </li></ul><ul><li>Phenolics </li></ul>
    26. 26. FRP - RESIN SYSTEM UNSATURATED POLYESTERS - 1 <ul><li>75% Resins Used in USA </li></ul><ul><li>Condensation Polymerization of Dicarboxylic Acids & Dihydric Alcohols </li></ul><ul><li>Contains Maleic Anhydride or Fumaric Acid </li></ul>
    27. 27. FRP - RESIN SYSTEM UNSATURATED POLYESTERS - 2 <ul><li>Dimensional Stability </li></ul><ul><li>Affordable Cost </li></ul><ul><li>Ease in Handling, Processing, & Manufacturing </li></ul><ul><li>High Corrosion Resistant & Fire Retardants </li></ul><ul><li>Best Value for Performance & Strength </li></ul>
    28. 28. FRP - RESIN SYSTEM EPOXIES <ul><li>Glycidyl Ethers and Amines </li></ul><ul><li>Customized Properties </li></ul><ul><li>Limited Workability </li></ul><ul><li>Sensitive to Curing Agents </li></ul><ul><li>High Performance </li></ul><ul><li>High First Cost </li></ul>
    29. 29. FRP - RESIN SYSTEM VINYL ESTERS <ul><li>Good Workability </li></ul><ul><li>Fast Curing </li></ul><ul><li>High Performance </li></ul><ul><li>Toughness </li></ul><ul><li>Excellent Corrosion Resistance </li></ul>
    30. 30. FRP - RESIN SYSTEM POLYURETHANES <ul><li>Polyisocyanate & Polyol </li></ul><ul><li>Reaction or Reinforced Injection Molding Process </li></ul><ul><li>High Performance </li></ul><ul><li>Toughness </li></ul><ul><li>Excellent Corrosion Resistence </li></ul>
    31. 31. FRP - RESIN SYSTEM PHENOLICS <ul><li>Phenols & Formaldehyde </li></ul><ul><li>Resole - Alkaline (F/P > 1.0) (Cured by Heat) </li></ul><ul><li>Novolac - Acidic (F/P < 1.0) (Cured by Chemical Reaction) </li></ul><ul><li>Resistance to High Temperature </li></ul><ul><li>Good Thermal Stability </li></ul><ul><li>Low Smoke Generation </li></ul>
    32. 32. FRP TECHNOLOGY FILLERS <ul><li>Control Composites’ Cost </li></ul><ul><li>Improved Mechanical Properties </li></ul><ul><li>Improved Chemical Properties </li></ul><ul><li>Reduced Creep & Shrinkage </li></ul><ul><li>Low Tensile Strength </li></ul><ul><li>Fire Retardant & Chemical Resistant </li></ul>
    33. 33. FRP TECHNOLOGY FILLER TYPES <ul><li>Calcium Carbonate </li></ul><ul><li>Kaolin </li></ul><ul><li>Alumina Trihydrate </li></ul><ul><li>Mica Feldspar </li></ul><ul><li>Wollastonite </li></ul><ul><li>Silica, Talc, Glass </li></ul>
    34. 34. FRP TECHNOLOGY ADDITIVES <ul><li>Improved Material Properties </li></ul><ul><li>Aesthetics </li></ul><ul><li>Enhanced Workability </li></ul><ul><li>Improved Performance </li></ul>
    35. 35. FRP TECHNOLOGY ADDITIVE TYPES <ul><li>Catalysts </li></ul><ul><li>Promoters </li></ul><ul><li>Inhibitors </li></ul><ul><li>Coloring Dyes </li></ul><ul><li>Releasing Agents </li></ul><ul><li>Antistatic Agents </li></ul><ul><li>Foaming Agents </li></ul>
    36. 36. FRP TECHNOLOGY SMART MATERIALS <ul><li>Innovative Design and Application </li></ul><ul><li>Customized Product for High Performance </li></ul><ul><li>Versatility </li></ul><ul><li>Complex Design Process </li></ul><ul><li>Materials, Processing, Configurations </li></ul>
    37. 37. FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul><ul><li>Take Advantage of Hybrid System </li></ul><ul><li>Use Bonded Assemblies & Joints </li></ul><ul><li>Provide Good Details on Connections </li></ul>
    38. 38. FRP - DESIGN AVOID ABRUPT THICKNESS <ul><li>Inefficient By Thickness </li></ul><ul><li>Avoid Stress Risers </li></ul><ul><li>Consider Stress Flow </li></ul><ul><li>Consider Load Paths </li></ul><ul><li>Understand Structural Behavior </li></ul>
    39. 39. FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul><ul><li>Take Advantage of Hybrid System </li></ul><ul><li>Use Bonded Assemblies & Joints </li></ul><ul><li>Provide Good Details on Connections </li></ul>
    40. 40. FRP - DESIGN GEOMETRICAL SHAPES <ul><li>Low Stresses </li></ul><ul><li>Optimize Design - Balance Criteria (Stress, Deflection, and Stability) </li></ul><ul><li>Use Flanges, Ribs, Stiffeners </li></ul><ul><li>Use Honeycomb or Box Cells, Tubes </li></ul><ul><li>Proportioning and Orienting Cells </li></ul>
    41. 41. FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul><ul><li>Take Advantage of Hybrid System </li></ul><ul><li>Use Bonded Assemblies & Joints </li></ul><ul><li>Provide Good Details on Connections </li></ul>
    42. 42. FRP - DESIGN HYBRID SYSTEMS <ul><li>High Strength in Composites </li></ul><ul><li>High Stiffness in Conventional Materials </li></ul><ul><li>Concrete Filled Carbon Shells </li></ul><ul><li>Reinforced Timber Beams </li></ul><ul><li>PS Tendons, Rods, Bars, Laminates </li></ul><ul><li>Account for Material Compatibility </li></ul>
    43. 43. FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul><ul><li>Take Advantage of Hybrid System </li></ul><ul><li>Use Bonded Assemblies & Joints </li></ul><ul><li>Provide Good Details on Connections </li></ul>
    44. 44. FRP - DESIGN BONDED JOINTS <ul><li>Epoxy Bonded Assemblies </li></ul><ul><li>Epoxy Bonded Joints </li></ul><ul><li>Bonded Shear Transfer Strips </li></ul><ul><li>Plate Bonding Technology </li></ul><ul><li>Bonded Splices </li></ul><ul><li>Durability of Joints </li></ul>
    45. 45. FRP - DESIGN FEATURES <ul><li>Avoid Abrupt Thickness Change </li></ul><ul><li>Take Advantage of Geometric Shapes </li></ul><ul><li>Take Advantage of Hybrid System </li></ul><ul><li>Use Bonded Assemblies & Joints </li></ul><ul><li>Provide Good Details on Connections </li></ul>
    46. 46. FRP - DESIGN CONNECTION DETAILS <ul><li>Local Stress Flow </li></ul><ul><li>Overall Load Path </li></ul><ul><li>Weak Links </li></ul><ul><li>Manufacturing Defects </li></ul><ul><li>Fabrication Irregularities </li></ul><ul><li>Select Proper Fasteners </li></ul>
    47. 47. FRP TECHNOLOGY FUTURE DEVELOPMENTS <ul><li>T 2 from Aerospace Industry - CE transition </li></ul><ul><li>Bridge structures - Stiffness Driven </li></ul><ul><li>Customized vs. Open Market </li></ul><ul><li>Cross Cutting Team in Design-Build </li></ul><ul><li>Education and Training of SE/CEs </li></ul><ul><li>New Construction Technology </li></ul><ul><li>New Manuf./Fabric. Technology </li></ul>
    48. 48. FRP TECHNOLOGY CONCLUSION - 1 <ul><li>Continue R & D Activities </li></ul><ul><li>Training </li></ul><ul><li>Government & Private Funding </li></ul><ul><li>Building Teamwork & Partnership </li></ul><ul><li>Proprietary Products & Patents </li></ul><ul><li>Performance/Prescriptive Specs - “Birth Certificate” & Baseline Reference </li></ul>
    49. 49. FRP TECHOLOGY CONCLUSION - 2 <ul><li>AASHTO, ASCE, ACI, PCI, </li></ul><ul><li>NSF, NIST (ATP), ISCC </li></ul><ul><li>Euro and Japanese Standards (Std.) </li></ul><ul><li>Design Std., Specs & Guidelines </li></ul><ul><li>Materials Specifications & Testing Std. </li></ul><ul><li>Manufacturing Process & Standards </li></ul><ul><li>Database Management </li></ul>
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×