5 g peek from cmcc 20may2013
Upcoming SlideShare
Loading in...5
×
 

5 g peek from cmcc 20may2013

on

  • 80 views

CMCC and 5G

CMCC and 5G
This year CMCC is exptected to start FDD 4G LTE

Statistics

Views

Total Views
80
Views on SlideShare
79
Embed Views
1

Actions

Likes
0
Downloads
3
Comments
0

1 Embed 1

https://www.linkedin.com 1

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

CC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike LicenseCC Attribution-NonCommercial-ShareAlike License

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

5 g peek from cmcc 20may2013 5 g peek from cmcc 20may2013 Presentation Transcript

  • A Peek at 5G Dr. Chih-Lin I C M C C C h i e f S c i e n t i s t , Wi re l e s s Te c h n o l o g i e s Head of Green Communication Research Center J o h a n n e s b e r g Summit May 20, 2013
  • 10 Years Ago 2013/5/20 2Chih-­‐Lin  I •  Y’2003,  ITU-­‐R  M.1645     •  Key  Technologies  
  • 4G Standardization Is Maturing 2013/4/8 3Chih-­‐Lin  I
  • •  Number of TD-LTE BS: reached 20,000 by the end of 2012; covering 15 cities in mainland; dual mode in HK •  Deploy 200,000 BS in 2013; at least 1M terminals Networks •  Large Scale Trial (before 2012): 6 cities •  Expanded Scale Trial (2012): 15 cities •  Commercial Network (2013): 100 cities Cities 6  TD-LTE an Example 2013/5/20
  • EU  FP7    and    Horizon  2020 METIS WWRF  Vision  2020 Looking Towards 2020 3GPP  Roadmap  to  Y’2020 UK  “5G  InnovaSon  Center” China  IMT-­‐2020   5Chih-­‐Lin  I2013/5/20
  • Multiple Voices NSN DoCoMo Huawei 2013/5/20
  • And Many Candidates Tech. Inno.  Access  Infrastructure HetNet CoMP DAS Relay/Terminal  Relay Small  Cell Terminal  Intelli. ICIC、eICIC ArSficial Collision  Mana. AAA/AAS Phy  Network  Coding Beyond  OFDM(A)    Transmission   Massive  MIMO Single  Band  Full  Deplux M2M、MTC D2D CogniSve  Radio AdapSve  Access Carrier  Aggregate Prototyping 。。。 。。。 Cloud  Network Delay  Tolerant Random  Coding Neural  Network GMC SocCell Liquid  Cell Hyper  Dense  NW. 2013/5/20
  • Too Early for a Comprehensive Picture Exploring  it  Piece  by  Piece     2013/5/20
  • GREEN
  • Are We Burning Our Earth? New Orleans  acer   Hurricane Katrina 10Chih-­‐Lin  I2013/5/20
  • ICT Also Responsible • 2007  Worldwide  ICT  carbon  footprint:  2%     — Comparable  to  the  global  aviaSon  industry   • Expected  to  grow  to  4%  by  2020   PredicSon  with  “power  efficient”  technologies 11Chih-­‐Lin  I2013/5/20 CMCC  Actual  Scale   2012:  1.11M  BSs,  14.3B  Kwh
  • Great Work Done BS  HW  (Antenna,  PA),   Architecture  (Relay,  AP),   OperaLon  (Sleep  mode,   Scheduler)   Energy  gain  of  75-­‐92% Improved  macro-­‐cell  hardware(H),  Cell  micro   DTX  (D),  Antenna  muLng  (A),  Low  loss  antennas   (L),  AdapLve  sectorizaLon  (S)     Energy  savings  of  60-­‐70%  with  no  more  than  5%   Throughput  degradaLon Mobile  VCE  SimulaSon  Results Energy  saving Performance 12Chih-­‐Lin  I2013/5/20
  • More Ambitious Goals 13Chih-­‐Lin  I2013/5/20
  • Green Meter Announcement 2013/4/8 14Chih-­‐Lin  I May  13,  2013,  GreenTouch  Announces:   Research  study  shows  net  energy  consumpSon  in  networks   can  be  reduced  by  up  to  90%  by  2020  while  taking  into   account  traffic  growth
  • SOFT
  • Cost, Efficiency, Agility GSM/GPRS/ EDGE   TD-­‐SCDMA   TD-­‐LTE  WiMax/WLAN   GSM  UE TD-­‐SCMDA  UE   TD-­‐LTE  UE   Diverse  ApplicaLons  &  Infrastructures • Complex carrier networks: proprietary nodes and hardware. • New std and features launch cycle too long: new variety of box needs to be integrated. 16Chih-­‐Lin  I2013/5/20
  • SDR: First considered in the 90’s •  SDR: radio is software defined •  Basic idea: signal processing developed based on reconfigurable HW platforms (however the platform may be vendor- proprietary) instead of special-purpose platform •  Motivation: –  Different radio products implemented on the same platform –  Software reuse among different products –  Remote software download and updates TradiSonal  dedicated  HW SDR SDR  products:  soc  modem,   SDR  controller,  etc. 2013/5/20
  • SDN: It is happening out there •  SDO to hit the target of SDN •  90+ member companies of all sizes, including network operators, service providers, etc., from not only IT but telecom industry •  SDN: –  Separation of control plane and data plane –  GPP-based programmable controller to reconfigure routing policy (i.e. control plane) •  Potential benefits –  Cost reduction on routers thanks to software programmability from GPP –  Facilitate orchestration of networks –  Services-aware routing 2013/5/20
  • Network Function Virtualization NFV  Approach  Classical  Network  Appliance   Approach   BRAS   Firewall  DPI   CDN   Tester/QoE   monitor   WAN   AcceleraSon   Message   Router   Radio/Fixed  Access   Network  Nodes   Carrier   Grade  NAT   Session  Border   Controller   PE  Router  SGSN/GGSN   •  Fragmented  non-­‐commodity  hardware.   •  Physical  install  per  appliance  per  site.   •  Hardware  development  large  barrier  to  entry  for  new   vendors,  constraining  innovaLon  &  compeLLon.   Independent   Socware   Vendors   High  volume  Ethernet  switches   High  volume  standard  servers   High  volume  standard  storage   Orchestrated,   automaSc  &  remote  install.   CompeSSve  &     InnovaSve    Ecosystem   Independent   Socware  Vendors   19Chih-­‐Lin  I2013/5/20
  • … RRU RRU RRU RRU RRU RRU RRU Virtual BS Pool Distributed RRU High bandwidth optical transport network Real-time Cloud for centralized processing … Centralized Control and/ or Processing Ø  Centralized processing resource pool that can support 10~1000 cells Collaborative Radio Ø  Multi-cell Joint scheduling and processing Real-Time Cloud Ø  Target to Open IT platform Ø  Consolidate the processing resource into a Cloud Ø  Flexible multi-standard operation and migration Clean System Target Ø  Less power consuming Ø  Lower OPEX Ø  Fast system roll-out C-RAN Concept Soc  base-­‐staLon  –  seamlessly  scalable  and  upgradable
  • Cloud RAN: Soft BS, Virtualization •  Virtualization of RAN for agility –  Multiple BBU entities in the same physical servers –  Multi-RAT support: RAT on virtual machine –  Accommodate Service on Edge •  Cost reduction and resource utilization improvement: –  Resource sharing and dynamic allocation according to traffic variation –  Live migration to consolidate resource, further to save power GSM/TD-­‐S/TD-­‐L  RRU   IT  HW  plamorms  (x86,  Power,  ARM)   RT-­‐Hypervisor     Virtual  Machine    Pool/  RT-­‐Guest  OS  (Linux)     CPRI  adaptor   Socware   Stack   GSM  BS     Socware   Stack   TD-­‐SCDMA  BS   Standard  servers GSM  UE CPRI TD-­‐SCMDA  UE   TD-­‐LTE  UE   Socware   Stack   TD-­‐LTE  BS   CDN/   Web   cache   Service  VM   L1  accelerator   2013/5/20 Common  IT  plamorm  based   soluSons  for  both  radio  access   network  and  core  network
  • 5 Pearls
  • CMCC Vision on 5G IT  based  core  network Anchor  BS Nano  AP Virtual  BB  pool ContentPool Anchor  BS Anchor  BS Massive  RRU Relay D2D   relay D2D   Indoor  Coverage User  Centric  Access  Network  SupporLng   exclusive  usage  of  available  spectrum  of   each  user   Green   SocTwo  Major  Themes Our  Pearls EE-­‐SE  Co-­‐design   System No  More   “Cells” Rethinking   Signaling/Control Invisible  “BS” 2G  Spectrum  Refarming …23Chih-­‐Lin  I2013/5/20
  • Great    potenSals  on  energy  saving  exists   EE and SE Co-Design Kliper  et.al.,  IEEE  JSTQE,  2011 Ultra  dense  network  roll  outTraffic  fluctuaSon  in  both  Sme  and   spaSal  domains   Spectrum  efficiency  no  longer  the  only  criteria Energy  efficiency  must  be   considered  side  by  side  in   mobile  internet  era     •  Increasing  gap  between  traffic   and  revenue    growth   •  Increasing  gap  between  traffic   and  EE  growth   2013/5/20
  • EE and SE Co-Design Monotonic  tradeoff Given  EE,  two  SE   values  exist But,  Non-­‐monotonic  when   considering  circuit  power   PredicSon  based  on  Shannon:   Component  level  power  model Different  configuraSons   More  complicated  with  extended  power  models     Imperfect  CSI,  block  fading   channel,  coherence  of  2,  4,  8,   or  16  symbols  (bosom  to  top)     Perfect  CSI     (serving  cell   only)   Data  from  Bell  Labs   2013/5/20
  • EE and SE Co-Design A  unified  EE/SE  theory  framework  should  be   developed  to  harmonize  the  research  acSviSes   Conclusion  draw  from  EARTH  project   -­‐-­‐  Antenna  muLng  can  save   power Conclusion  draw  from  LSAS  theory   -­‐-­‐  More  antennas,  less   power 2013/5/20
  • LSAS (Tom Marzetta) ü Always  tradeoff  between  EE  and  SE  with  a            given    #  of  antennas  (M)   ü EE/SE  relaSonship  is  improved  in  whole  by              increasing  #  of  antennas   When  only  radiated  power  is  considered   When  addiSonal  computaSon  power  is   also  considered  (grow  with  #Antenna)   ü EE  increases  with  SE  in  low  SE  region   ü Fewer  antennas  is  more  helpful  to            improve  the  EE  in  low  SE  region   ü As  the  computaSon  capability  (Gflops/Was)            increases,  the  EE  is  enhanced  and  using   more  antennas  is  preferred 27Chih-­‐Lin  I2013/5/20
  • Circuit  Power:  #Subcarriers  &  #Antenna   (Zhikun  Xu) When  the    number  of  subcarriers  can  be  switched  on  or  off  adapSvely  in  MIMO-­‐ OFDM  systems ü When  the  subcarriers  are  not  used  up,  EE  increases  with  SE     ü Increasing  #  of  antennas  benefits  the  EE  only  when  no  subcarriers  are  available.     ü Increasing  the  frequency  resources  is  more  energy  efficient  than  increasing  the  spaSal            resources Note:   •   Solid  part  of  each  cure  denotes   the  case  that  the  subcarriers  are   not  used  up   • Dash  part  denotes  the  case  that   no  subcarriers  are  available 28Chih-­‐Lin  I2013/5/20
  • No  More  “Cells” The  “Cellular”  concept  has  accompanied  wireless   network  from  1G  to  4G Douglas  H.  Ring  &  W.  Rae  Young    1947  at  Bell  Lab 4G 1G   3G 2G •  StaSc  network  planning  &   semi-­‐staSc  opSmizaSon   •  Cell-­‐centric  RRM   •  Increased  flat  network  scale   and  power  consumpSon   •  …   It’s  Sme  to  break  out  from  the  “Cells”  for  5G   Different  perspecSves  to  match  2020  needs Resources • Network-level RRM • Network-level CRM • Network-level SP Protocols • Signalling/data decuoping • UL/DL decoupling Deployment • Infrastructure virtualization • Spectrum virtualization • Centralization Features • No cell physical ID • No inter-cell interference • No handoff 2013/5/20
  • No  More  “Cells”    Hetnet   From  single-­‐ layer  coverage   to  mulS-­‐layer   coverage                  CoMP   From  cell-­‐level  SP   to  coordinatd  SP   among  CoMP  set   Short-­‐term  sales-­‐ up  potenSal   BCG2   Signalling/data decuoping DAS   From cell-­‐level  SP  to   centralized  SP   CoMP processor Coordinated multi-points Tx/Rx DAS: Distributed (large-scale) antenna system …RRU RRU RRU RRU BBU macro micro femto Break in coverage Break in RRM The  wireless  world  has  been  on  the  way  ,  more  or   less,  to  revamp  the  “cell”  concept. Break in Signal ProcessingBreak in Protocol 2013/5/20
  • No  More  “Cells” RRU   RRU   RRU   RRU   RRU   RRU   RRU   X2+   Virtual  BS  Pool   Virtual  BS  Pool   PHY/MAC   PHY/MAC   PHY/MAC   PHY/MAC   Distributed     configurable   wideband  RRU   High  bandwidth   opLcal  transport   network   Real-­‐Lme  Cloud  for   centralized   processing   …   C-­‐RAN  will  be  a  fundamental    element  in  the   architecture  of  next  generaSon  wireless  network   •  Common  plamorm,  socware   based  soluSon   •  Live  (soc)  computaSon   resource  transiSon   •  Inherent  cooperaSon   BS  virtualizaSon  2013/5/20
  • No  More  “Cells” Amorphous  Cells  Concept MS3 MS2 MS1 MulLcast  control   DL  &  UL  data  transmission DL  data  transmission UL  data  transmission Unified  broadcast  control Multiple layers The  transiSon  from  Network-­‐Centric  to  User-­‐Centric   Rethink  Handover Signaling & Data Decoupling DL&UL Decoupling 2013/5/20
  • Rethinking Signaling/Control New  signaling  mechanism  should  be  invesSgated   to  reduce  the  signaling  overhead Voice Data  signaling  raSo(DSR)   is  extremely  low  of  IM   • TradiSonal  voice:   100~600   • IM(QQ):  <1 “Green”  protocol  for  diverse  QoE   requirements  of  future  mobile   applicaSons     •  AdapSve  protocol  itself  with  slim   signaling  set/flow   •  ApplicaSon  aware   •  ConnecSon  oriented  à   connecSonless  oriented   •  …       DSR  raSo  of  current  network IM(QQ) 2013/5/20
  • Throughput    Rate  vs.    Packet  loss  rate  &  Latency  in  Wireless  Network Rethinking Signaling/Control •  Conventional TCP protocol designed for wire network with low latency and low packet loss rate, •  Extreme poor performance over wireless network u  Exciting finding by MIT with coding for TCP over WiFi • From 1Mbps to 16Mbps under typical 2% packet loss. • From 0.5Mbps to 13.5Mbps under 5% packet on the train. TCP  should  be  revisited  for  mobile  environment   -­‐-­‐  To  improve  the  QoE  of  end  customers 2013/5/20
  • Network Coding Mobile TCP over 3GPP p  New protocol stack only at mobile access network •  A Network Coding layer between TCP layer and IP layer p  Practical Scheme for deployment •  A TCP agency added in gateway •  Keeping TCP protocol unchanged in core network Rethinking Signaling/Control 2G   TD   LTE   BTS   BSC/PCU   NodeB   RNC   S1-­‐U   Gb   Iu   S1-­‐MME   S11   Serving  GW   PDN  GW   S5/8   S4   S3   Gn   GGSN   SGSN   MME   eNodeB   Internet   2013/5/20
  • Making BS “Invisible" p  TradiSonal  BS  roll  out  is  no   longer  sustainable   •  Environment  unfriendly   •  Hard  for  site  selecSon,  network   planning   •  High  cost   •  High  power  consumpSon   Bottom PCB with RF transceiver , FPGA, and Memory Power & Fiber Outputs PA Integration Antenn a Layers 36Chih-­‐Lin  I2013/5/20
  • Bottom PCB with RF transceiver, FPGA, and Memory Power & Fiber Outputs PA Integration Antenna Layers Front  View Side  View Two  layers  of  radiators   Three  layers  of  stacked   radiators   Terminal  RFIC  based   Wide  band  patch  antenna Flexible 15cm  X  15cm  X  7cm 5cm  X  5cm  X  3cm ? Making BS “Invisible" Small  form  factor  compact  RF/Antenna  module  is  the  key 37Chih-­‐Lin  I2013/5/20
  • Making BS “Invisible" Large  scale  cooperaSon  over  modules  is  necessary    (LSAS)à   Sweet  Spot  of  N*M Energy  savingPerformance  Enhancement Cap.  Enhancement Central  processing  for   cooperaSon 38Chih-­‐Lin  I2013/5/20
  • 2G Spectrum Refarming p  3GPP LTE-Hi for  hotspot  and  indoor   (3.4GHz-­‐3.6GHz)     p  4.4GHz  –  4.5GHz  and  4.8GHz  –  4.99GHz  (Chinese   government  in  WP5D  15th  meeSng)   p  3.3GHz  –  3.4GHz  (Chinese  companies)   p  3.4  –  3.6  MHz,  3.6–  4.2GHz  and  4.4  –  4.9GMHz (Japan)   p  5925  –  6425MHz  (Russia)  and  above  6GHz  (Kor)     p  … Channel  measurement  at  28GHz  (from  Samsung) 10x  (?)  more  spectrum  for  2020 Candidate  spectrum  proposed  by  different  stakeholders p High  frequency  bands  are   idenSfied  and/or  invesSgated   for  capacity  enhancement   p Coverage  and  mobility? 2013/5/20
  • OpSon  1:    Used  by  LTE p  Operates in standalone mode, with network architecture, signaling, PHY/MAC protocols, etc, being optimized p  With full duplex? p  IoT optimized? p operates as an umbrella signaling network, to assist LTE, WiFi, etc in 2020 OpSon  2:  New  OpSmized    Design UL DL 1710                                                                                          1785  1805                                                                                                               1880 ETACS/EGSM TACS/GSM GSM        880                      890                          905                      915    925                      935                            950                    960   DCS  1800:  75MHz  DL/UL 1755      1785        1850    1880                  1920                                              1980        2010    2025    2010              2170                2200    2300                                                  2400 GSM900:  35MHz  DL/UL 3G:  150MHz  TDD,  120MHz  FDD TDD FDD ETACS/EGSM TACS/GSM GSM 2G Spectrum Refarming p Beyond  2020,  2G  networks  are   very  likely  not  needed.     p 2G  spectrum  refarming  should  be   considered  seriously. 2013/5/20
  • Summary • The  future  must  be  “Green”   • “Soc”  from  core  network  to  RAN   • Thoughts  on  5G:   • EE/SE  Co-­‐design   • No  more  “Cells”   • Rethink  Signaling/Control   • BS  “invisible”   • Refarm  2G  spectrum   • …   41Chih-­‐Lin  I2013/5/20
  • Thank youThank  You