Mg Innovation Flng Cn 2010 R1

  • 1,428 views
Uploaded on

 

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,428
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
62
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. INNOVATIVE IDEAS FOR LIGHT MODULES FLNG FORUM 2010:24 MARCH PRESENTED BY MUKES GUPTA – MD CANADOIL ENGINEERING © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 2. INNOVATIVE IDEAS FOR LIGHT MODULES FOR FPSO & FLNG 1.) INTRODUCTION ……HERE BACKGROUND OF SELF AND PAST EXPERIENCE WITH MODULES SHALL BE SHARED 2) FPSO & FLNG ……CURRENT STATUS 3) FUTURE PROSPECTS FOR FPSO & FLNG……..PERSPECTIVE PLANNING & GROWTH PROSPECTS 4) CHALLENGES IN DEVELOPING FLNG PROJECTS 5) INNOVATIVE IDEAS & APPROACH 6) EXPECTED TRENDS IN FLNG / FPSO 7) A POSSIBLE WAY FORWARD 8) CONCLUSION
  • 3. 1. INTRODUCTION CANADOIL ENGINEERING CAPABILITIES World Class P W ld Cl Provider Of E i id Engineering S l ti i Solutions
  • 4. STATE OF ART FACILITIES STATE OF ART FACILITIES CANADOIL ENGINEERING CONCEPT CANADOIL ENGINEERING CONCEPT
  • 5. THE ONE STOP SHOP THE ONE STOP SHOP 1 DESIGN/ 5 ONSITE ENGINEERING COMMISSIONING 2 PIPE & FITTING 4 INTEGRATED MANUFACTURING COATING 3 FABRICATION / SPOOLING
  • 6. 2. FPSO & FLNG CURRENT STATUS…… CURRENTLY @ 100+ FPSO’S UNDER OPERATION ’ ONE FLNG PLANT UNDER EPC AND COUPLE OF THEM UNDER FEED / CONCEPT STAGE MAINLY ONSHORE TECHNOLOGY & PLANT DESIGN CONCEPT APPLIED TO SHIP. ENGINEERING WISE  POSSIBLE TO IMPROVE WITH INVOLVEMENT OF ESTABLISHED ENGG COMPANY HAVING BOTH  POSSIBLE TO IMPROVE WITH INVOLVEMENT OF ESTABLISHED ENGG COMPANY HAVING BOTH OFFSHORE & ONSHORE EXPERIENCE NEED TO INVOLVE MODULE SUPPLIERS HAVING ENGINEERING BACKGROUND TO ENSURE TROUBLE  FREE MODULE TIE UP & OPERATION ON THE SHIP FREE MODULE TIE UP & OPERATION ON THE SHIP CURRENTLY THE FLNG CONCEPT OF FULL LAND BASED PLANT BEING FIXED ON FLOATING HAS SOME  CHALLENGES TO ADDRESS ISSUE RELATED TO SLOSHING MOVEMENT, INTER SHIP TRANSFER,  OPERATION OF PLANT DURING ROUGH WEATHER CONDITION ETC OPERATION OF PLANT DURING ROUGH WEATHER CONDITION ETC Worldwide need for clean burning fuel • Shortage of large fields near shore leads to high project cost. • The cost escalation has led to floating LNG production on a vessel (FLNG) b) A way to develop stranded gas fields, isolated, remote from land and other Infrastructure c) Alternative to flaring and re-injection d) Alternative to land-based Greenfield LNG-plants ) p e) Market uncertainty • Improved technology in LNG storage & transfer (sloshing and motion effects) • FPSOs are conventional, over 100 in operation p • Hundreds of offshore gas fields over 0.5 trillion cubic feet, suitable for 1 – 2 MTPA FLNG.
  • 7. SIMPLIFIED LNG BLOCK DIAGRAM SHOWING DIFFERENT MODULES (TYPICAL) ( )
  • 8. MAIN MODULES, PACKAGES & EQUIPMENTS……….FOR FLNG , Q • ACID GAS ABSORBER : packed column ACID GAS ABSORBER : packed column • SLUG CATCHER  • HEAT EXCHANGERS • GAS FILTERATION / SEPARATION GAS FILTERATION / SEPARATION – Coil‐Wound Heat Exchanger (CWHE) – Plate Fin Heat Exchangers (PFHE)  • GAS TREATMENT COMPRISING OF  – Core‐in‐kettle Core in kettle – Low fin tubes heat exchangers • GAS DEHYDRATION – Printed Circuit Heat Exchangers (PCHE) • GAS DRYING • ROTATING MACHINES – Compressors p • GAS SWEETENING GAS SWEETENING – Turboexpanders – Gas turbines and power generators • MERCURY REMOVAL
  • 9. 3. FUTURE PROSPECT & GROWTH…… DEMAND FOR 150 MILLION TON PER YEAR OF LNG BY 2012 POSSIBLE TO HAVE A MEDIUM SIZE FLNG WITH CAPACITY OF 1 TO 2 MILLION TON PER YEAR  REQUIREMENT OF LIQUEFACTION VS CNG TO BE EVALUATED (NOT ECONOMICAL FOR DISTANCE LESS THEN 3000  MILES).
  • 10. 4. CHALLENGES IN DEVELOPING FLNG PROJECTS  There are a number of issues that need to be carefully examined when considering  a floating LNG facility a floating LNG facility • Location & sea condition • Survival in storm conditions • Ensuring smooth facility operation in motion & rough sea E i h f ili i i i & h • Suitable sites having available large quantity of Gas which can be trapped subsea • Availability of skilled manpower to build & operate, material and equipments /  package modules suitable for operation in marine environment, suppliers,  Certifying agency…..  y g • Whether we really need such huge FLNG terminals or whether a smaller version  can be more productive and economical • Access for export / import vessels (tugs & pilotage) • Type of plant, liquefaction / regasification • Type of plant liquefaction / regasification • Type of vessel & containment • Mooring of the facility • Method of transfer of cargo M th d f t f f • Deck congestion
  • 11. 5. INNOVATIVE IDEAS & APPROACH……FOR MODULARIZATION BENEFITS OF MODULARIZATION MODULARIZATION APPROACH & ISSUES CASE STUDY ZORA CASE STUDY ZORA CASE STUDY SPG CASE STUDY QGII CASE STUDY WITH MODULE SUPPLIERS DISCIPLINE ENGINEERING INVOLVING INNOVATIVE IDEAS FOR LIGHTER  MODULES
  • 12. BENEFITS OF MODULARIZATION FASTER TO BUILT, QUICKER CASH FLOW FRM PRODUCT DELIVERY, EARLY PROD SAFER COST EFFECTIVE (CONST COST SAVING, LESS TESTING ON SITE / SHIP) BETTER QUALITY DUE TO CONTROLLED WORKING CONDITION MINIMIZE IMPACT & FIELD WORK AT FINAL PRODUCTION SITE MINIMIZE IMPACT & FIELD WORK AT FINAL PRODUCTION SITE MINIMIZE LAYDOWN SPACE MINIMIZE IN‐AIR WORK STRUCTURAL / FOUNDATION REQUIREMENT SIMPLIFIED REDUCE DELAYS DUE TO ADVERSE WEATHER FEWER FITTING ERRORS FEWER FITTING ERRORS PROCUREMENT SIMPLIFIED MATERIAL & EQUIPMENT ARE EXPENSIVE & DIFFICULT TO OBTAIN ON TIME SHORTEN SCHEDULES FURTHER BY CONCURRENT PROCESSES SUCH AS  FABRICATION, PERMITTING & LOGISTICAL ARRANGEMENTS UNIQUE MODEL OF COMPANY CAPABLE OF LSTK ENGG, FABRICATION,  UNIQUE MODEL OF COMPANY CAPABLE OF LSTK ENGG FABRICATION PROCUREMENT & CONSTRUCTION SERVICES FOR MODULAR PROJECT GLOBAL NETWORK OF ENGG PROCUREMENT CONSTRUCTION RESOURCES  ENSURING FASTER DELIVERY
  • 13. PITFALLS OF MODULARIZATION Bad Management Incomplete planning Incomplete planning Material delivery not synchronized with the module assembly Location of module yard  Construction begins too soon Construction begins too soon Decisions during construction are made based on construction completion date not on  the basis of the potential incurred cost by incomplete or un‐installed components Case study:  y •Typical issue like for one module the EHT (Electric Heat Tracing) had not been designed and  they were proceeding with the installation of the Insulation.  •The modules were going to be finished and shipped in this state. Someone had made the  decision that shipping the modules without the EHT but installing the insulation was the  best thing to do.  •This decision was a typical example of how the modularization concept can turn from a   major cost reduction initiative to a disaster.  major cost reduction initiative to a disaster •The insulation and cladding will have to be removed and probably wasted because the size  will most likely be larger than installed at the yard •The EHT cables will have to be field installed The EHT cables will have to be field installed  •The power points and connections and will have to be field installed •Field costs will be exponentially more as compared to the cost of those at the module yard  Commissioning and start‐up will be delayed. g p y • The project will see a major cost overrun.
  • 14. INNOVATIVE & CORRECT APPROACH FOR MODULARIZATION Modularization concept must start at feed stage Create a strong integrated Management team for the Detailed design Plan the procurement of materials in the order of assembly Pl h f i l i h d f bl The detailed design must be initiated using the module or modules as the  basis and the components and equipment must be designed to fit the module  not the module designed to suit the equipment Constructability must be done at the planning stage, e.g. the fabricators and  y g module assembly team should be involved at the detailed design stage. g Long lead items must be identified and purchased well in advance Module assembly must be done using the 80/20 rule meaning that the  assembly does not begin unless 80% of the module materials have been  assembly does not begin unless 80% of the module materials have been received and the other 20% have been purchased and are in the process of  being delivered. The module assembly yard should be adjacent to the water to avoid  The module assembly yard should be adjacent to the water to avoid shipping constraints in terms of size and weight.
  • 15. INNOVATIVE COST SAVING METHOD FOR MODULARIZATION Standardize the sizes of structural components Meaning that do not over engineer if a common size works,  Meaning that do not over engineer if a common size works even if it is a heaver section than is required the bulk purchase of  a common size will result in cost saving g Bulk purchase electrical cable and wire early If there are multiple modules that will be assembled together  If there are multiple modules that will be assembled together on the vessel, perform all hydrostatic testing in the module yard  and use the “In‐Process” inspection system for the joints  between the modules. Maximize the work in the module yard and minimize the work  performed in the field or on the ship.
  • 16. Q QATAR GAS OFFSHORE & AMINE FILTERATION MODULE……CASE STUDY
  • 17. TEMPORARY FLARE PACKAGE SUITABLE TO FIT & USE ON 3 DIFF PLATFORMS
  • 18. ASSEMBLY OF MODULES……MODULARIZATION IDEAS DESIGNING GAS/ LNG FACILITIES FOR LOCATION ON FLOATER…… AMINE SWEETENING MODULE
  • 19. ONSHORE PLANT CONVERTED TO MODULE TO BE SHIPPED…….CASE STUDY
  • 20. TYPICAL GAS DEHYDRATION PACKAGE MODULE…….CASE STUDY
  • 21. WEIGHT REDUCTION ANALYSIS & OPTIMIZATION OF MODULES FOR OFFSHORE PLATFORM ………..CASE STUDY ZORA PLATFORM
  • 22. WEIGHT REDUCTION ON THE OFFSHORE ..…..CASE STUDY ZORA PLATFORM
  • 23. WEIGHT REDUCTION ON THE OFFSHORE ..…..CASE STUDY ZORA PLATFORM
  • 24. CONTROL ROOM & SWITCHGEAR MODULES IN FLOATING ENVIRONMENT ARE QUITE STANDARDIZED AND USED IN PAST FOR POWER BARGE CASE STUDY FPP BARGE.….CASE
  • 25. 6. EXPECTED TRENDS IN MODULARIZATION - PRINCIPLES DRIVING THE MODULE DESIGN……. DESIGN • Safety • Process functions rationale – Central interconnecting pipe rack to feed process modules – Follow logic of flows to minimize piping lengths – Minimize motions of key equipment Minimize motions of key equipment • Modularization philosophy – Well‐defined hull / topsides interfaces – Mechanical completion by function – easier testing & pre‐commissioning – Size / weight of modules selected to enable lifting by conventional means • Addressed technological difficulties Addressed technological difficulties – Process selection / on board floater – Machinery selection – Layout / plot plan / plot plan • Good understanding of technical quantities / cost of facilities • Facility remains « on par » in terms of project magnitude with currently delivered large  oil FPSOs • Important commercial potential for medium scale gas accumulations
  • 26. GAS TURBINES GUIDELINES The Gas Turbine selected has to be referenced as: • Off shore application (FPSO) • Power generation (Electrical motor) • Mechanical driver (High “power density” and efficiency for big compressors) power density • Aero-derivative (high efficiency) • Machine proven reliability
  • 27. LIQUEFACTION TECHNOLOGY SELECTION CRITERIA…… • TECHNOLOGICAL SELECTION STRATEGY – Selection of a simple and robust liquefaction process, adapted to medium capacity  l f l d b l f d d d and marine environment with high inherent safety – Avoid the use of large HydroCarbon (HC) liquid inventory (such as: refrigerants  used in onshore LNG plants) – Minimization of two‐phase flows – Minimization of distillation towers  – No by‐products (as LPG) to avoid logistics constraints – Use of proven equipment in identical or similar technologies (gas turbines, heat  exchangers…) exchangers ) – For utilities and common facilities (sea water cooling, flare …), stay within  capacities already in place in large FPSOs. (200,000 BOPD) LNG FPSO OFFSHORE  LNG FSRUs
  • 28. ACID GAS REMOVAL PACKAGE ……. • RECOMMENDED INTERNALS IN MOVING ENVIRONMENT : STRUCTURED PACKING – Trays and random packing are not recommended because of liquid channeling and  y p g q g efficiency drops – Structured packing is less affected by tilt and motion thanks to an higher hydraulic resistance to sideways flow • MOTION IMPACT ON STRUCTURED PACKING PERFORMANCES – A permanent tilt has an effect on liquid flow repartition. p q p – Periodic oscillations have a natural mixing effect, less damaging on performances than permanent tilt
  • 29. CRITICAL ISSUES FOR MODULE /EQUIPMENT LOCATIONS…… Q – The column should be located as close as possible from the centre of gravity of  the ship to limit liquid maldistribution – Intermediate remixing distributors reduce the consequence of the liquid flow  distortion. This leads to an increase of the column length. – Specific distributors, enable to mitigate motion on distribution – experienced vendors to be considered to avoid problems
  • 30. Process design aspects  • Natural gas (typical composition > 86% CH4, N2, C2, C3, C4) • At temp. –256 F (–160 C) and atmospheric pressure it condenses to a liquid called liquefied natural gas (LNG). • The LNG storage and transportation is accomplished by super insulation in a pressurized, double tank system. • Design pressure of equipment is kept as low as possible, to ensure low thickness and hence weight . • The storage pressure of about 8 bar is maintained. • From safety point of view, the equipment structure must have superior fire, blast and low temperature resistance. • It should also be able to withstand significant collision loads from supply boats or LNG carriers ” carriers. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 31. Typical LNG Offloading  yp g – LNG Carrier offloading every three days – Berthing offloading & departure: 18 hours Berthing, offloading & departure: 18 hours – Rate:  10,000 to 14,000 cubic meters/hour NGL Pipeline NGL Pipeline Gas Conditioning  Plant LNG Gas Pipelines G Pi li L N G Surface Storage Vaporization
  • 32. Liquefaction Process Criteria q
  • 33. Risk Management for‐LNG Technology for LNG covers the “Gas Transportation Chain” Propulsion  Hull Vibration Maintenance Dual Fuel Containment  System Integrity System Integrity Collision and  Grounding Structural  Terminal  Integrity I t it Class/Certification Ice Strengthening  and Cold Weather  Operations 46
  • 34. INSTRUMENTATION © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 35. FLNG Automation typically accounts for only 3% of the capital costs for an FLNG project, but is critical to its successful operation. The automation technology and p j gy project execution methodology p y a large role in gy play g determining how successful ongoing operations will be. The key in accelerating project execution for FLNG is in deploying recent technologies such as wireless and electronic marshalling combined with an advanced project execution model © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 36. FLNG A distributed modular approach for the automation…. Reduces Control room footprint, and cable size & weight, Facilitates modular design design, Pre-assembly and test which helps reduce the project timeline. Wireless Instrumentation approach for the automation.. Eliminate cables, conduit, cable tray, and the overall steel and space required, which translate into lower operational costs. Electronic marshalling reduces design, engineering, drawings, cabinets and the associated incremental installation and commissioning effort required. These technologies combined with a structured project execution methodology help to reduce the overall project risk and cost. It also p provides the vessel's staff with the control, safety, and information , y, © 2010 Canadoil Group  © MG required for efficient, ongoing operations www.canadoilgroup.com
  • 37. PIPING © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 38. FLNG FLNG HIGHLIGHTS – Piping Discipline inputs p g p p Layout of the topside facilities is driven by the sequential placement of the processing systems The key to an optimal layout is modularization by process or utility system. Each major system i t j t is treated as a stand-alone system and as a modularized t d t d l t d d l i d component of the entire facility. The t d di d layout uses a central corridor with modules on either side and Th standardized l t t l id ith d l ith id d pipe racks running from bow to stern. The piping interfaces between modules should be kept to a minimum. This configuration minimizes the impact of relative motion caused by wave action and resulting hog and sag of mid ship mid-ship bending. It also fosters personnel safety by allowing for access, egress, and the materials handling necessary for operation and maintenance. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 39. A) Equipment Layout Consideration The modularization of layout in to various modules & sub modules to be used for entire layout system Each major system is treated as a stand-alone module system and as a modularized j y y component of the entire facility Modularization takes care of following a) Various units s to kept and assembled as modules b) The piping interfaces between modules should be kept to a minimum c) The piping is contained within the specific module with a basic in/out connection to the adjoining module to form a contiguous pipe rack once the modules are integrated. d) To integrate the pipe rack into the module structure. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 40. Typical example of modular system is given below as a Electric Generator Set Electric Generator system can be modularized by following manner ----Generator unit to be skid mounted ----Skid to be equipped with all accessories including with fuel tank, Lube tank, and start up compressed Air Tank etc. ----Equipments location on skid to be decided to have minimum length of piping on skid to be located Interconnecting piping of acceries to main skid ----All secondary pipe supports to be taken from main support frame of skid ----Vent & d i V t drain points f skids t b i t for kid to brought t th b tt ht to the battery li it aw a single ti point limit i l tie i t for each skid © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 41. B) Piping component Weight reduction consideration For optimization /reduction weight is discussed below 1) Use light weight material with similar technical properties, Example of same is given below. e..g. e g For water service /drain service use plastics such as GRP , PP,HDPE PP HDPE 2) In order to reduce pipe weight by reducing pie thickness of pipe can be achieved by use Superior grade piping material with Superior corrosion resistance & allowable stresses bearing capacities. e.g. Instead of A 53 use A106 Material Instead f I t d of CS use SS Material M t i l © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 42. B) Stress/Flexibility related factor for Weight reduction consideration Impact on weigh due to stress/flexibility factors can be kept under control with following steps ----Feasibility for Using alternative Light weight material for supports to be reviewed on case to case basis ------Piping stresses t b optimized so th t l Pi i t to be ti i d that least possible fitti & R ti l t ibl fitting Routine length i th is reviewed & used ------No of life cycles to be based on no of years for system operability requirements No © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 43. INNOVATION & COST CONTROLLING ASPECTS IN STRUCTURAL ENGINEERING OF FLNG PROJECTS © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 44. THREE MAJOR ASPECTS ● CHOICE OF MATERIAL ● CORROSSION RESISTANCE ● USE OF MODULAR STRUCTURES © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 45. Plastics and Synthetic Materials, Composites Increasingly, plastic and similar synthetic materials are being utilized in the marine environment. Glass, carbon, and aramid fibers are embedded in a resinous synthetic polymer. , , y p y Uses range from glass fiber–reinforced plastic for pipelines to neoprene and natural rubber fenders and bearings, to polyethylene bags for slope protection and polyurethane foams for buoyancy buoyancy. Porous geotextile filter fabrics are extensively © 2000 by CRC Press LLC employed under riprap to prevent leaching of sand. Epoxies are injected for repair or applied as jointing and coating compounds compounds. Polyethylene pipes have been used for cold water pipelines in depths up to 2000 ft (600 m) off the island of Hawaii, and Kevlar, nylon, and carbon fiber mooring lines are i common use i fl ti offshore operations. li in in floating ff h ti Glass fiber–reinforced plastic is used for fender piles to protect wharves. Fiberglass and carbon tendons have been employed as prestressing tendons on an experimental basis. Ductility of concrete piles and columns has been increased by encasement in aramid fibers. Carbon fiber sheets, affixed to the bottom of beams, increase the , , bending capacity while carbon fiber sheets, affixed to the sides, increase the shear capacity. Aramid fibers (Kevlar) are increasingly utilized in deepwater mooring systems. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 46. Titanium Titanium is the “ultimate” material for marine applications, due to its strength and freedom f f d from corrosion. However, it is very expensive. Titanium is used in critical marine installations which are subject to rapid corrosion, e.g., saltwater ballast lines that are in frequent use. Titanium cladding was applied to the steel shafts of the Trans-Tokyo Bay Bridge Bridge. Titanium structural elements can be rolled with the following properties: Strength 800–1200 MPa (120,000–160,000 psi) Endurance limit under cyclic loading 400–500 MPa (60,000–70,000 psi) Unit Weight U it W i ht 48 kN/ 3 4 8 T/ 3(300 lb/ kN/m3= 4.8 T/m3(300 lb/cu. ft ) ft.) `Cost Five times that of steel Future developments in metallurgy may make titanium more available at lower costs. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 47. CORROSSION RESISTANCE DNV rules require that the provisions for coating include: 1. A description of general application conditions at coating yard 2. Method and equipment for surface preparation 3. Ranges of temperature and relative humidity 4. Application 4 A li i methods h d 5. Time between surface preparation and first coat 6. Minimum and maximum dry film thickness of a single coat 7. Number of coats and minimum total dry film thickness 8. Relevant drying characteristics 9. Procedure for repair of damaged coating 10. Methods of inspection — for example, adhesion testing and holiday detection © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 48. ACKNOWLEDGEMENTS (PHOTOGRAPHS; ARTICLES & PRESENTATION….) · ABS · Shell · FPC · Technip · FlexLNG · QG · ConocoPhillips · Saipem · DNV · Aker · Waller Marine · EnerSea Votrans · E & P (Brian) · Asim Deshpande & Michael Economides · CE & CG Team (Bill / Milind) & others