Your SlideShare is downloading. ×
0
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Mg innovation flng cn 2010
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Mg innovation flng cn 2010

721

Published on

Innovative approach for FLNG

Innovative approach for FLNG

Published in: Design
2 Comments
0 Likes
Statistics
Notes
  • You are welcome Mr.Stephan - thanks for your positive feedback and appreciation. FLNG is still in evolving phase and I believe it has to go through some learning cycle and challenges before the technology gets established and proven. The costs involved runs in to billion $ for such learning & only company with deep pocket and risk and bring in such innovative ideas into practice :-)
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • very interesting technical overview, thanks! SW -- BP
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
  • Be the first to like this

No Downloads
Views
Total Views
721
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
18
Comments
2
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. INNOVATIVE IDEAS FOR LIGHT MODULESFLNG FORUM 2010:24 MARCHPRESENTED BY MUKES GUPTA – MD CANADOIL ENGINEERING © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 2. INNOVATIVE IDEAS FOR LIGHT MODULES FOR FPSO & FLNG1.) INTRODUCTION ……HERE BACKGROUND OF SELF AND PASTEXPERIENCE WITH MODULES SHALL BE SHARED2) FPSO & FLNG ……CURRENT STATUS3) FUTURE PROSPECTS FOR FPSO & FLNG……..PERSPECTIVEPLANNING & GROWTH PROSPECTS4) CHALLENGES IN DEVELOPING FLNG PROJECTS5) INNOVATIVE IDEAS & APPROACH6) EXPECTED TRENDS IN FLNG / FPSO7) A POSSIBLE WAY FORWARD8) CONCLUSION
  • 3. 1. INTRODUCTIONCANADOIL ENGINEERING CAPABILITIES World Class P W ld Cl Provider Of E i id Engineering S l ti i Solutions
  • 4. STATE OF ART FACILITIESSTATE OF ART FACILITIESCANADOIL ENGINEERING CONCEPTCANADOIL ENGINEERING CONCEPT
  • 5. • CANADOIL GROUP
  • 6. THE ONE STOP SHOP THE ONE STOP SHOP 1 DESIGN/ 5 ONSITE ENGINEERING COMMISSIONING2 PIPE & FITTING 4 INTEGRATED MANUFACTURING COATING 3 FABRICATION / SPOOLING
  • 7. THAILAND (RAYONG) FACILITY  (680,000 SQUARE METERS)PIPE FITTING FABRICATION COATING
  • 8. PIPE & FITTING MANUFACTURERPIPE & FITTING MANUFACTURER ELBOW Diameter : 12.7mm (1/2”) – 3058.8mm(120”) Thickness : 6 mm (1/4”) – 150 mm (6”) TEE Diameter : 12.7mm (1/2”) – 3058.8mm(120”)PIPE Thickness : 6 mm (1/4”) – 150 mm (6”)Diameter : 100 mm (4”) ‐ 3048 mm (120”)Thickness : 6.35 mm (0.25”) ‐ 100 mm (4.0”)Length : 3 meters (72” ‐ 120”),  12 meters (10” ‐ 72”),  ( ) CAP Diameter : 12.7mm (1/2”) – 3058.8mm(120”) 15 meters (16” ‐ 72”) Thickness : 6 mm (1/4”) – 150 mm (6”) REDUCER Diameter : 12.7mm (1/2”) – 3058.8mm(120”) Thickness : 6 mm (1/4”) – 150 mm (6”)
  • 9. MATERIALS
  • 10. FABRICATIONSLUG CATCHERS PRESSURE VESSELS PIG LAUNCHERS PIG LAUNCHERS SPOOLING
  • 11. MODULES
  • 12. PHOTOS OF PHOTOS OFPACKAGES THAT CAN BE HANDLED GLYCOL GLYCOL REGENERATION CONTACTOR UNIT
  • 13. COMPLETE ENGINEERING COMPLETE ENGINEERING ABU DHABI Lump Sum Turn Key Packages Pre‐feasibility Studies & Concept studies Trouble Shooting/ Front End Engineering Design/ Technical Services FEED/Basic Engineering Commissioning Services (Including Start‐up Engineering Management  & Trial run) Services Construction Management  Detailed EngineeringServices & Pre‐Commissioning Inspection & Expediting Services Procurement Services S i
  • 14. QUALITY ASSURANCEQUALITY ASSURANCE ENGINEERING
  • 15. PROJECT ENGINEERING MANAGEMENTGAS TREATMENT PACKAGESGas Treatment Packages Gas Treatment PackagesBudgeted Man hour 60,000 approx HIGHLIGHTS: GAS Sweetening Package, GAS Drying Package and GAS Dehydration packageCE SCOPE: FEED AND DETAILED ENGINEERING; 
  • 16. PROJECT ENGINEERING MANAGEMENTBAGCR PROJECT – GOHT & KHT REFINERY UNIT UPDATEPresent Progress till Dec 09 : 23.5% Present Progress till Dec 09 : 23.5%Budgeted Man hour 1,70,000 approx Man hour spent till end of DEC 09 : 36000HIGHLIGHTS: GAS OIL HYDROTREATER and KEROSENE HYDROTREATER UNITS PART OF 4 BILLION US$ GAS CONDENSATE REFINERY 360000 BPDCAPACITY : 42,000 BARRELS PER DAY x 2 Trains for GOHT & 25,000 x 1 Train for KHT f fLICENSOR: HALDAR TOPSOE / FEED : SNAMPROGETTI LICENSOR: HALDAR TOPSOE / FEED : SNAMPROGETTICE SCOPE: DETAILED ENGINEERING; PROCUREMENT ENGG; FIELD ENGG & COMMISSG.
  • 17. PROJECT ENGINEERING MANAGEMENTMAHSHAHR PRODUCT STORAGE FACILITY PROJECTBASIC Engineering being finalized by SPG, Germany, Detail Engineering by CEBASIC Engineering being finalized by SPG, Germany, Detail Engineering by CEBudgeted Man hour 1,00,000 approx HIGHLIGHTS: CYOGENIC STORAGE AND HADLING FACILITY FOR C3, C4 and C5+ ProductsCE SCOPE: DETAILED ENGINEERING; PROCUREMENT ENGG; FIELD ENGG & COMMISSG. ASSISTANCE
  • 18. UNIQUE COMPETITIVE ADVANTAGES GAINED BY UNIQUE COMPETITIVE ADVANTAGES GAINED BY PARTNERING WITH CANADOIL SHORTER DELIVERY TIME INCREASE ENGINEERING KNOW HOW AND INNOVATIVE SOLUTIONS BASED ON PRODUCTION PRE-FABBRICATION DEVELOPMENT OPTIMIZATION OF ENGINEERING SPECIFICATION OF MATERIAL REQUISITIONS THEREFORE AVOIDING OVER DESIGN & OVER COSTS REDUCED RISK OF MULTIPLE CONTACT/CONTRACT MANAGEMENT CLOSER RELATIONSHIP TO MANUFACTURED COMPONENTS OR END PRODUCT
  • 19. 2. FPSO & FLNG CURRENT STATUS…… CURRENTLY @ 100+ FPSO’S UNDER OPERATION ’ ONE FLNG PLANT UNDER EPC AND COUPLE OF THEM UNDER FEED / CONCEPT STAGE MAINLY ONSHORE TECHNOLOGY & PLANT DESIGN CONCEPT APPLIED TO SHIP. ENGINEERING WISE POSSIBLE TO IMPROVE WITH INVOLVEMENT OF ESTABLISHED ENGG COMPANY HAVING BOTH POSSIBLE TO IMPROVE WITH INVOLVEMENT OF ESTABLISHED ENGG COMPANY HAVING BOTHOFFSHORE & ONSHORE EXPERIENCE NEED TO INVOLVE MODULE SUPPLIERS HAVING ENGINEERING BACKGROUND TO ENSURE TROUBLE FREE MODULE TIE UP & OPERATION ON THE SHIPFREE MODULE TIE UP & OPERATION ON THE SHIP CURRENTLY THE FLNG CONCEPT OF FULL LAND BASED PLANT BEING FIXED ON FLOATING HAS SOME CHALLENGES TO ADDRESS ISSUE RELATED TO SLOSHING MOVEMENT, INTER SHIP TRANSFER, OPERATION OF PLANT DURING ROUGH WEATHER CONDITION ETCOPERATION OF PLANT DURING ROUGH WEATHER CONDITION ETC Worldwide need for clean burning fuel • Shortage of large fields near shore leads to high project cost. • The cost escalation has led to floating LNG production on a vessel (FLNG)b) A way to develop stranded gas fields, isolated, remote from land and other Infrastructurec) Alternative to flaring and re-injectiond) Alternative to land-based Greenfield LNG-plants ) pe) Market uncertainty • Improved technology in LNG storage & transfer (sloshing and motion effects) • FPSOs are conventional, over 100 in operation p • Hundreds of offshore gas fields over 0.5 trillion cubic feet, suitable for 1 – 2 MTPA FLNG.
  • 20. SIMPLIFIED LNG BLOCK DIAGRAM SHOWING DIFFERENT MODULES (TYPICAL) ( )
  • 21. MAIN MODULES, PACKAGES & EQUIPMENTS……….FOR FLNG , Q • ACID GAS ABSORBER : packed column ACID GAS ABSORBER : packed column• SLUG CATCHER  • HEAT EXCHANGERS• GAS FILTERATION / SEPARATION GAS FILTERATION / SEPARATION – Coil‐Wound Heat Exchanger (CWHE) – Plate Fin Heat Exchangers (PFHE) • GAS TREATMENT COMPRISING OF  – Core‐in‐kettle Core in kettle – Low fin tubes heat exchangers• GAS DEHYDRATION – Printed Circuit Heat Exchangers (PCHE)• GAS DRYING • ROTATING MACHINES – Compressors p• GAS SWEETENING GAS SWEETENING – Turboexpanders – Gas turbines and power generators• MERCURY REMOVAL
  • 22. 3. FUTURE PROSPECT & GROWTH…… DEMAND FOR 150 MILLION TON PER YEAR OF LNG BY 2012 POSSIBLE TO HAVE A MEDIUM SIZE FLNG WITH CAPACITY OF 1 TO 2 MILLION TON PER YEAR  REQUIREMENT OF LIQUEFACTION VS CNG TO BE EVALUATED (NOT ECONOMICAL FOR DISTANCE LESS THEN 3000 MILES).
  • 23. 4. CHALLENGES IN DEVELOPING FLNG PROJECTS There are a number of issues that need to be carefully examined when considering a floating LNG facilitya floating LNG facility• Location & sea condition• Survival in storm conditions• Ensuring smooth facility operation in motion & rough sea E i h f ili i i i & h• Suitable sites having available large quantity of Gas which can be trapped subsea• Availability of skilled manpower to build & operate, material and equipments / package modules suitable for operation in marine environment, suppliers, Certifying agency…..  y g• Whether we really need such huge FLNG terminals or whether a smaller version can be more productive and economical• Access for export / import vessels (tugs & pilotage)• Type of plant, liquefaction / regasification• Type of plant liquefaction / regasification• Type of vessel & containment• Mooring of the facility• Method of transfer of cargo M th d f t f f• Deck congestion
  • 24. 5. INNOVATIVE IDEAS & APPROACH……FOR MODULARIZATION BENEFITS OF MODULARIZATION MODULARIZATION APPROACH & ISSUES CASE STUDY ZORA CASE STUDY ZORA CASE STUDY SPG CASE STUDY QGII CASE STUDY WITH MODULE SUPPLIERS DISCIPLINE ENGINEERING INVOLVING INNOVATIVE IDEAS FOR LIGHTER MODULES
  • 25. BENEFITS OF MODULARIZATION FASTER TO BUILT, QUICKER CASH FLOW FRM PRODUCT DELIVERY, EARLY PROD SAFER COST EFFECTIVE (CONST COST SAVING, LESS TESTING ON SITE / SHIP) BETTER QUALITY DUE TO CONTROLLED WORKING CONDITION MINIMIZE IMPACT & FIELD WORK AT FINAL PRODUCTION SITE MINIMIZE IMPACT & FIELD WORK AT FINAL PRODUCTION SITE MINIMIZE LAYDOWN SPACE MINIMIZE IN‐AIR WORK STRUCTURAL / FOUNDATION REQUIREMENT SIMPLIFIED REDUCE DELAYS DUE TO ADVERSE WEATHER FEWER FITTING ERRORS FEWER FITTING ERRORS PROCUREMENT SIMPLIFIED MATERIAL & EQUIPMENT ARE EXPENSIVE & DIFFICULT TO OBTAIN ON TIME SHORTEN SCHEDULES FURTHER BY CONCURRENT PROCESSES SUCH AS FABRICATION, PERMITTING & LOGISTICAL ARRANGEMENTS UNIQUE MODEL OF COMPANY CAPABLE OF LSTK ENGG, FABRICATION,  UNIQUE MODEL OF COMPANY CAPABLE OF LSTK ENGG FABRICATIONPROCUREMENT & CONSTRUCTION SERVICES FOR MODULAR PROJECT GLOBAL NETWORK OF ENGG PROCUREMENT CONSTRUCTION RESOURCES ENSURING FASTER DELIVERY
  • 26. PITFALLS OF MODULARIZATION Bad Management Incomplete planning Incomplete planning Material delivery not synchronized with the module assembly Location of module yard  Construction begins too soon Construction begins too soon Decisions during construction are made based on construction completion date not on  the basis of the potential incurred cost by incomplete or un‐installed components Case study:  y •Typical issue like for one module the EHT (Electric Heat Tracing) had not been designed and  they were proceeding with the installation of the Insulation.  •The modules were going to be finished and shipped in this state. Someone had made the  decision that shipping the modules without the EHT but installing the insulation was the  best thing to do.  •This decision was a typical example of how the modularization concept can turn from a   major cost reduction initiative to a disaster.  major cost reduction initiative to a disaster •The insulation and cladding will have to be removed and probably wasted because the size  will most likely be larger than installed at the yard •The EHT cables will have to be field installed The EHT cables will have to be field installed  •The power points and connections and will have to be field installed •Field costs will be exponentially more as compared to the cost of those at the module yard  Commissioning and start‐up will be delayed. g p y • The project will see a major cost overrun.
  • 27. INNOVATIVE & CORRECT APPROACH FOR MODULARIZATION Modularization concept must start at feed stage Create a strong integrated Management team for the Detailed design Plan the procurement of materials in the order of assembly Pl h f i l i h d f bl The detailed design must be initiated using the module or modules as the  basis and the components and equipment must be designed to fit the module  not the module designed to suit the equipment Constructability must be done at the planning stage, e.g. the fabricators and  y g module assembly team should be involved at the detailed design stage. g Long lead items must be identified and purchased well in advance Module assembly must be done using the 80/20 rule meaning that the  assembly does not begin unless 80% of the module materials have been  assembly does not begin unless 80% of the module materials have been received and the other 20% have been purchased and are in the process of  being delivered. The module assembly yard should be adjacent to the water to avoid  The module assembly yard should be adjacent to the water to avoid shipping constraints in terms of size and weight.
  • 28. INNOVATIVE COST SAVING METHOD FOR MODULARIZATION Standardize the sizes of structural components Meaning that do not over engineer if a common size works,  Meaning that do not over engineer if a common size workseven if it is a heaver section than is required the bulk purchase of a common size will result in cost saving g Bulk purchase electrical cable and wire early If there are multiple modules that will be assembled together  If there are multiple modules that will be assembled togetheron the vessel, perform all hydrostatic testing in the module yard and use the “In‐Process” inspection system for the joints between the modules. Maximize the work in the module yard and minimize the work performed in the field or on the ship.
  • 29. QQATAR GAS OFFSHORE & AMINE FILTERATION MODULE……CASE STUDY
  • 30. TEMPORARY FLARE PACKAGE SUITABLE TO FIT & USE ON 3 DIFF PLATFORMS
  • 31. ASSEMBLY OF MODULES……MODULARIZATION IDEASDESIGNING GAS/ LNG FACILITIES FOR LOCATION ON FLOATER……AMINE SWEETENING MODULE
  • 32. ONSHORE PLANT CONVERTED TO MODULE TO BE SHIPPED…….CASE STUDY
  • 33. TYPICAL GAS DEHYDRATION PACKAGE MODULE…….CASE STUDY
  • 34. WEIGHT REDUCTION ANALYSIS & OPTIMIZATION OF MODULES FOR OFFSHOREPLATFORM ………..CASE STUDY ZORA PLATFORM
  • 35. WEIGHT REDUCTION ON THE OFFSHORE ..…..CASE STUDY ZORA PLATFORM
  • 36. WEIGHT REDUCTION ON THE OFFSHORE ..…..CASE STUDY ZORA PLATFORM
  • 37. CONTROL ROOM & SWITCHGEAR MODULES IN FLOATING ENVIRONMENT AREQUITE STANDARDIZED AND USED IN PAST FOR POWER BARGE CASE STUDY FPP BARGE.….CASE
  • 38. 6. EXPECTED TRENDS IN MODULARIZATION - PRINCIPLES DRIVING THE MODULEDESIGN…….DESIGN • Safety • Process functions rationale – Central interconnecting pipe rack to feed process modules – Follow logic of flows to minimize piping lengths – Minimize motions of key equipment Minimize motions of key equipment • Modularization philosophy – Well‐defined hull / topsides interfaces – Mechanical completion by function – easier testing & pre‐commissioning – Size / weight of modules selected to enable lifting by conventional means • Addressed technological difficulties Addressed technological difficulties – Process selection / on board floater – Machinery selection – Layout / plot plan / plot plan • Good understanding of technical quantities / cost of facilities • Facility remains « on par » in terms of project magnitude with currently delivered large  oil FPSOs • Important commercial potential for medium scale gas accumulations
  • 39. GAS TURBINES GUIDELINESThe Gas Turbine selected has to be referenced as:• Off shore application (FPSO)• Power generation (Electrical motor)• Mechanical driver (High “power density” and efficiency for big compressors) power density• Aero-derivative (high efficiency)• Machine proven reliability
  • 40. LIQUEFACTION TECHNOLOGY SELECTION CRITERIA……• TECHNOLOGICAL SELECTION STRATEGY – Selection of a simple and robust liquefaction process, adapted to medium capacity  l f l d b l f d d d and marine environment with high inherent safety – Avoid the use of large HydroCarbon (HC) liquid inventory (such as: refrigerants  used in onshore LNG plants) – Minimization of two‐phase flows – Minimization of distillation towers  – No by‐products (as LPG) to avoid logistics constraints – Use of proven equipment in identical or similar technologies (gas turbines, heat  exchangers…) exchangers ) – For utilities and common facilities (sea water cooling, flare …), stay within  capacities already in place in large FPSOs. (200,000 BOPD) LNG FPSO OFFSHORE  LNG FSRUs
  • 41. ACID GAS REMOVAL PACKAGE …….• RECOMMENDED INTERNALS IN MOVING ENVIRONMENT : STRUCTURED PACKING – Trays and random packing are not recommended because of liquid channeling and  y p g q g efficiency drops – Structured packing is less affected by tilt and motion thanks to an higher hydraulic resistance to sideways flow• MOTION IMPACT ON STRUCTURED PACKING PERFORMANCES – A permanent tilt has an effect on liquid flow repartition. p q p – Periodic oscillations have a natural mixing effect, less damaging on performances than permanent tilt
  • 42. CRITICAL ISSUES FOR MODULE /EQUIPMENT LOCATIONS…… Q – The column should be located as close as possible from the centre of gravity of  the ship to limit liquid maldistribution – Intermediate remixing distributors reduce the consequence of the liquid flow  distortion. This leads to an increase of the column length. – Specific distributors, enable to mitigate motion on distribution – experienced vendors to be considered to avoid problems
  • 43. Process design aspects  • Natural gas (typical composition > 86% CH4, N2, C2, C3, C4) • At temp. –256 F (–160 C) and atmospheric pressure it condenses to a liquid called liquefied natural gas (LNG). • The LNG storage and transportation is accomplished by super insulation in a pressurized, double tank system. • Design pressure of equipment is kept as low as possible, to ensure low thickness and hence weight . • The storage pressure of about 8 bar is maintained. • From safety point of view, the equipment structure must have superior fire, blast and low temperature resistance. • It should also be able to withstand significant collision loads from supply boats or LNG carriers ” carriers.© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 44. Typical LNG Offloading  yp g– LNG Carrier offloading every three days– Berthing offloading & departure: 18 hours Berthing, offloading & departure: 18 hours– Rate:  10,000 to 14,000 cubic meters/hour NGL Pipeline NGL Pipeline Gas Conditioning  Plant LNG Gas Pipelines G Pi li L N G Surface Storage Vaporization
  • 45. Liquefaction Process Criteria q
  • 46. Risk Management for‐LNGTechnology for LNG covers the “Gas Transportation Chain” Propulsion  Hull Vibration Maintenance Dual Fuel Containment  System Integrity System Integrity Collision and  Grounding Structural  Terminal  Integrity I t it Class/Certification Ice Strengthening  and Cold Weather  Operations 46
  • 47. INSTRUMENTATION© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 48. FLNGAutomation typically accounts for only 3% of the capital costs for an FLNGproject, but is critical to its successful operation. The automationtechnology and p j gy project execution methodology p y a large role in gy play gdetermining how successful ongoing operations will be.The key in accelerating project execution for FLNG is in deploying recenttechnologies such as wireless and electronic marshalling combined with anadvanced project execution model© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 49. FLNGA distributed modular approach for the automation…. Reduces Control room footprint, and cable size & weight, Facilitates modular design design, Pre-assembly and test which helps reduce the project timeline.Wireless Instrumentation approach for the automation.. Eliminate cables, conduit, cable tray, and the overall steel and space required, which translate into lower operational costs. Electronic marshalling reduces design, engineering, drawings, cabinets and the associated incremental installation and commissioning effort required. These technologies combined with a structured project execution methodology help to reduce the overall project risk and cost. It also p provides the vessels staff with the control, safety, and information , y, © 2010 Canadoil Group  © MG required for efficient, ongoing operations www.canadoilgroup.com
  • 50. PIPING© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 51. FLNGFLNG HIGHLIGHTS – Piping Discipline inputs p g p p Layout of the topside facilities is driven by the sequential placement of the processing systems The key to an optimal layout is modularization by process or utility system. Each major system i t j t is treated as a stand-alone system and as a modularized t d t d l t d d l i d component of the entire facility. The t d di d layout uses a central corridor with modules on either side and Th standardized l t t l id ith d l ith id d pipe racks running from bow to stern. The piping interfaces between modules should be kept to a minimum. This configuration minimizes the impact of relative motion caused by wave action and resulting hog and sag of mid ship mid-ship bending. It also fosters personnel safety by allowing for access, egress, and the materials handling necessary for operation and maintenance. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 52. A) Equipment Layout ConsiderationThe modularization of layout in to various modules & sub modules to be used forentire layout systemEach major system is treated as a stand-alone module system and as a modularized j y ycomponent of the entire facilityModularization takes care of followinga) Various units s to kept and assembled as modulesb) The piping interfaces between modules should be kept to a minimumc) The piping is contained within the specific module with a basic in/out connection to the adjoining module to form a contiguous pipe rack once the modules are integrated.d) To integrate the pipe rack into the module structure. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 53. Typical example of modular system is given below as a Electric Generator SetElectric Generator system can be modularized by following manner----Generator unit to be skid mounted----Skid to be equipped with all accessories including with fuel tank, Lube tank,and start up compressed Air Tank etc.----Equipments location on skid to be decided to have minimum length of piping onskid to be located Interconnecting piping of acceries to main skid----All secondary pipe supports to be taken from main support frame of skid----Vent & d i V t drain points f skids t b i t for kid to brought t th b tt ht to the battery li it aw a single ti point limit i l tie i tfor each skid © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 54. B) Piping component Weight reduction considerationFor optimization /reduction weight is discussed below1) Use light weight material with similar technical properties, Example of same is given below. e..g. e g For water service /drain service use plastics such as GRP , PP,HDPE PP HDPE2) In order to reduce pipe weight by reducing pie thickness of pipe can be achieved by use Superior grade piping material with Superior corrosion resistance & allowable stresses bearing capacities. e.g. Instead of A 53 use A106 Material Instead f I t d of CS use SS Material M t i l © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 55. B) Stress/Flexibility related factor for Weight reduction considerationImpact on weigh due to stress/flexibility factors can be kept under control withfollowing steps----Feasibility for Using alternative Light weight material for supports to be reviewed on case to case basis------Piping stresses t b optimized so th t l Pi i t to be ti i d that least possible fitti & R ti l t ibl fitting Routine length i th is reviewed & used------No of life cycles to be based on no of years for system operability requirements No © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 56. INNOVATION & COST CONTROLLING ASPECTS IN STRUCTURAL ENGINEERING OF FLNG PROJECTS© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 57. THREE MAJOR ASPECTS● CHOICE OF MATERIAL● CORROSSION RESISTANCE● USE OF MODULAR STRUCTURES© 2010 Canadoil Group  © MGwww.canadoilgroup.com
  • 58. CHOICE OF MATERIALComposite ConstructionThe form of steel–concrete construction i where steel plates are j i d withTh f f t l t t ti is h t l l t joined ithconcrete so that the two form one structural element in themselves. The twomust have mechanical means for developing shear between the steel andconcrete components components.Typical arrangements are1. A steel beam is joined to the concrete by welded studs. The concrete takes j ycompression; the steel plate takes tension and transverse shear. This is thescheme commonly employed in bridge construction.2. Special shear connectors, in the form of transverse bars or vertical plates(with holes), are welded to the steel.3. Two steel plates, spaced apart, are filled with concrete. The two plates aretied together with steel diaphragms or bolts or perhaps even short stressed diaphragms, bolts,bars. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 59. Plastics and Synthetic Materials, Composites Increasingly, plastic and similar synthetic materials are being utilized in themarine environment. Glass, carbon, and aramid fibers are embedded in a resinous synthetic polymer. , , y p y Uses range from glass fiber–reinforced plastic for pipelines to neoprene andnatural rubber fenders and bearings, to polyethylene bags for slope protection andpolyurethane foams for buoyancy buoyancy. Porous geotextile filter fabrics are extensively © 2000 by CRC Press LLCemployed under riprap to prevent leaching of sand. Epoxies are injected for repairor applied as jointing and coating compounds compounds. Polyethylene pipes have been used for cold water pipelines in depths up to 2000ft (600 m) off the island of Hawaii, and Kevlar, nylon, and carbon fiber mooringlines are i common use i fl ti offshore operations.li in in floating ff h ti Glass fiber–reinforced plastic is used for fender piles to protect wharves.Fiberglass and carbon tendons have been employed as prestressing tendons on anexperimental basis. Ductility of concrete piles and columns has been increased by encasement inaramid fibers. Carbon fiber sheets, affixed to the bottom of beams, increase the , ,bending capacity while carbon fiber sheets, affixed to the sides, increase theshear capacity. Aramid fibers (Kevlar) are increasingly utilized in deepwatermooring systems. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 60. TitaniumTitanium is the “ultimate” material for marine applications, due to its strength andfreedom ff d fromcorrosion. However, it is very expensive.Titanium is used in critical marine installations which are subject to rapid corrosion,e.g., saltwaterballast lines that are in frequent use. Titanium cladding was applied to the steelshafts of the Trans-Tokyo Bay Bridge Bridge.Titanium structural elements can be rolled with the following properties:Strength 800–1200 MPa (120,000–160,000 psi)Endurance limit under cyclic loading 400–500 MPa (60,000–70,000 psi)Unit WeightU it W i ht 48 kN/ 3 4 8 T/ 3(300 lb/ kN/m3= 4.8 T/m3(300 lb/cu. ft ) ft.)`Cost Five times that of steelFuture developments in metallurgy may make titanium more available at lower costs. © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 61. CORROSSION RESISTANCEDNV rules require that the provisions for coating include:1. A description of general application conditions at coating yard2. Method and equipment for surface preparation3. Ranges of temperature and relative humidity4. Application4 A li i methods h d5. Time between surface preparation and first coat6. Minimum and maximum dry film thickness of a single coat7. Number of coats and minimum total dry film thickness8. Relevant drying characteristics9. Procedure for repair of damaged coating10. Methods of inspection — for example, adhesion testing and holiday detection © 2010 Canadoil Group  © MG www.canadoilgroup.com
  • 62. ACKNOWLEDGEMENTS (PHOTOGRAPHS; ARTICLES & PRESENTATION….)· ABS· Shell· FPC· Technip· FlexLNG· QG· ConocoPhillips· Saipem· DNV· Aker· Waller Marine· EnerSea Votrans· E & P (Brian)· Asim Deshpande & Michael Economides· CE & CG Team (Bill / Milind) & others

×