Your SlideShare is downloading. ×
0
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Matrix beam
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Matrix beam

203

Published on

Published in: Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
203
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
28
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. BEAM ANALYSIS USING THE STIFFNESS METHOD ! ! ! ! ! ! ! Development: The Slope-Deflection Equations Stiffness Matrix General Procedures Internal Hinges Temperature Effects Force & Displacement Transformation Skew Roller Support 1
  • 2. Slope – Deflection Equations P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 2
  • 3. • Degrees of Freedom M θΑ B A 1 DOF: θΑ C 2 DOF: θΑ , θΒ L θΑ A P B θΒ 3
  • 4. • Stiffness Definition kAA kBA 1 B A L k AA = 4 EI L k BA = 2 EI L 4
  • 5. kBB kAB A B 1 L k BB = 4 EI L k AB = 2 EI L 5
  • 6. • Fixed-End Forces Fixed-End Forces: Loads P L/2 PL 8 L/2 PL 8 L P 2 P 2 w wL2 12 wL 2 L wL2 12 wL 2 6
  • 7. • General Case P i w j k Cj settlement = ∆j Mij P i w j Mji θi ψ θj 7
  • 8. Mij P i j w Mji θi L θj ψ 4 EI 2 EI θi + θj = M ij L L Mji = 2 EI 4 EI θi + θj L L θj θi (MFij)∆ + (MFji)∆ settlement = ∆j + P (MFij)Load M ij = ( settlement = ∆j w (MFji)Load 4 EI 2 EI 2 EI 4 EI )θ i + ( )θ j + ( M F ij ) ∆ + ( M F ij ) Load , M ji = ( )θ i + ( )θ j + ( M F ji ) ∆ + ( M F ji ) Load 8 L L L L
  • 9. • Equilibrium Equations i P w j k Cj Cj M Mji Mji jk Mjk j + ΣM j = 0 : − M ji − M jk + C j = 0 9
  • 10. • Stiffness Coefficients Mij i j Mji L θj θi kii = 4 EI L k ji = 2 EI L ×θ i k jj = 4 EI L ×θ j 1 kij = 2 EI L + 1 10
  • 11. • Matrix Formulation M ij = ( 4 EI 2 EI )θ i + ( )θ j + ( M F ij ) L L M ji = ( 2 EI 4 EI )θ i + ( )θ j + ( M F ji ) L L  M ij  (4 EI / L) ( 2 EI / L) θ iI   M ij F   M  =   + (2 EI / L) ( 4 EI / L) θ j   M ji F    ji      kii k ji [k ] =  kij  k jj   Stiffness Matrix 11
  • 12. P i Mij w j Mji θi L [ M ] = [ K ][θ ] + [ FEM ] θj ψ ∆j ([ M ] − [ FEM ]) = [ K ][θ ] [θ ] = [ K ]−1[ M ] − [ FEM ] Mij Mji θj θi Fixed-end moment Stiffness matrix matrix + (MFij)∆ (MFji)∆ [D] = [K]-1([Q] - [FEM]) + (MFij)Load P w (MFji)Load Displacement matrix Force matrix 12
  • 13. • Stiffness Coefficients Derivation Mj θi Mi Real beam i j L Mi + M j L Mi + M j L/3 M jL 2 EI L Mj EI Conjugate beam Mi EI θι MiL 2 EI M j L 2L MiL L )( ) + ( )( ) = 0 2 EI 3 2 EI 3 M i = 2 M j − − − (1) + ΣM 'i = 0 : − ( + ↑ ΣFy = 0 : θ i − ( M L MiL ) + ( j ) = 0 − − − (2) 2 EI 2 EI From (1) and (2); 4 EI )θ i L 2 EI )θ i Mj =( L Mi = ( 13
  • 14. • Derivation of Fixed-End Moment Point load P Real beam Conjugate beam A A B B L M EI M M EI M P M EI ML 2 EI PL2 16 EI PL 4 EI ML 2 EI 2 PL 16 EI M EI PL ML ML 2 PL2 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 16 EI 8 14
  • 15. P PL 8 PL 8 L P 2 P 2 P/2 PL/8 P/2 -PL/8 -PL/8 - -PL/8 -PL/16 - -PL/16 PL/4 + -PL/8 − PL − PL PL PL + = + 16 16 4 8 15
  • 16. Uniform load w Real beam Conjugate beam A A L B B M EI M M M EI M EI ML 2 EI ML 2 EI w wL3 24 EI wL2 8 EI M EI wL3 24 EI wL2 ML ML 2 wL3 + ↑ ΣFy = 0 : − − + = 0, M = 2 EI 2 EI 24 EI 12 16
  • 17. Settlements Mi = Mj Real beam Mj Conjugate beam L Mi + M j M L A M EI B ∆ ∆ M EI Mi + M j L M EI ML 2 EI ML 2 EI M M EI ∆ + ΣM B = 0 : − ∆ − ( ML L ML 2 L )( ) + ( )( ) = 0, 2 EI 3 2 EI 3 M= 6 EI∆ L2 17
  • 18. • Typical Problem CB w P1 P2 C A B L1 P PL 8 PL 8 L2 wL2 12 L 0 PL 4 EI 2 EI M AB = θA + θB + 0 + 1 1 8 L1 L1 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 P2 L2 wL2 4 EI 2 EI M BC = θB + θC + 0 + + L2 L2 8 12 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = 8 12 L2 L2 w wL2 12 L 18
  • 19. CB w P1 P2 C A B L1 L2 CB M BC MBA B M BA = M BC PL 2 EI 4 EI θA + θB + 0 − 1 1 8 L1 L1 P L wL 4 EI 2 EI = θB + θC + 0 + 2 2 + 2 L2 L2 8 12 2 + ΣM B = 0 : C B − M BA − M BC = 0 → Solve for θ B 19
  • 20. P1 MAB CB w MBA A L1 B P2 MBC L2 C M CB Substitute θB in MAB, MBA, MBC, MCB 0 PL 4 EI 2 EI θA + θB + 0 + 1 1 M AB = L1 L1 8 0 EI PL 2 EI 4 M BA = θA + θB + 0 − 1 1 8 L1 L1 0 2 4 EI 2 EI P2 L2 wL2 θB + θC + 0 + + M BC = 8 12 L2 L2 0 2 − P2 L2 wL2 2 EI 4 EI θB + θC + 0 + − M CB = L2 L2 8 12 20
  • 21. P1 MAB A Ay CB w MBA B L1 P2 MCB MBC L2 Cy C By = ByL + ByR B P1 MAB B A Ay L1 MBA ByL P2 MBC ByR L2 C MCB Cy 21
  • 22. Stiffness Matrix • Node and Member Identification • Global and Member Coordinates • Degrees of Freedom •Known degrees of freedom D4, D5, D6, D7, D8 and D9 • Unknown degrees of freedom D1, D2 and D3 6 9 5 14 2EI 1 3 2 21 EI 2 8 3 7 22
  • 23. Beam-Member Stiffness Matrix 3 1 i j 2 E, I, A, L 6 5 k14 AE/L k41 AE/L k11 = AE/L 4 AE/L = k44 d1 = 1 d4 = 1 1 2 3 4 1 0 0 3 0 0 4 -AE/L AE/L 5 0 0 6 0 6 - AE/L 2 [k] = AE/L 5 0 23
  • 24. 3 i 1 6EI/L2 = k32 2 4 6 6EI/L2 = k65 5 6EI/L2 = k35 d5 = 1 12EI/L3 = k52 12EI/L3 1 2 1 AE/L 2 [k] = E, I, A, L k62 = 6EI/L2 d2 = 1 k22 = j 3 12EI/L3 = k25 4 5 0 - AE/L 0 0 12EI/L3 0 - 12EI/L3 3 0 6EI/L2 0 - 6EI/L2 4 -AE/L 0 AE/L 0 5 0 -12EI/L3 0 12EI/L3 6 0 6EI/L2 0 12EI/L3 = k55 6 - 6EI/L2 24
  • 25. 3 i 1 j 2 k33 = 4EI/L d3 = 1 E, I, A, L 2EI/L = k63 4 6 5 4EI/L = k66 2EI/L = k36 d6 = 1 k23 = 6EI/L2 6EI/L2 = k53 k26 = 6EI/L2 6EI/L2 = k56 1 3 4 5 6 1 AE/L 0 0 - AE/L 0 0 2 [k] = 2 0 12EI/L3 6EI/L2 0 - 12EI/L3 6EI/L2 3 0 6EI/L2 4EI/L 0 - 6EI/L2 2EI/L 4 -AE/L 0 0 AE/L 0 0 5 0 -12EI/L3 -6EI/L2 0 12EI/L3 -6EI/L2 6 0 6EI/L2 2EI/L 0 - 6EI/L2 4EI/L 25
  • 26. • Member Equilibrium Equations Mi Fxi i j E, I, A, L AE/L AE/L x δ i 1 Mj Fyj AE/L AE/L + 6EI/L2 6EI/L2 1 6EI/L2 1 x ∆i 12EI/L3 12EI/L3 + + 12EI/L3 4EI/L x δj 1 + 6EI/L2 = Fyi Fxj 2EI/L 1 x ∆j 12EI/L3 4EI/L 2EI/L x θi x θj 1 6EI/L2 MFi FFxi FFyi + 6EI/L2 6EI/L2 FFyj FFxj 6EI/L2 MFj 26
  • 27. Fxi = ( AE / L)δ i + Fyi = (0)δ i + (0)δ i Mxi = Fxj = (−AE / L)δ i Fyj = (0)δ i Mj = (0)δ i Fxi    Fyj  Mi   = Fxj  Fyj    M j    (0) ∆i (0)θ i + (−AE / L)δ j + (0) ∆j + (0)θ j + F Fxi (12EI / L3 ) ∆i (6EI / L2 )θ i (0)δ j (−12EI / L3 ) ∆j (6EI / L2 )θ j F Fyi (6EI / L2 ) ∆i (0) ∆i (4EI / L)θ i (0)θ i (0)δ j ( AE / L)δ j (−6EI / L2 ) ∆j (0) ∆j (2EI / L)θ j (0)θ j MiF F Fxi (0)δ j (0) ∆j (−6EI / L2 )θ j F Fyj (0)δ j (−6EI / L2 ) ∆j (4EI / L)θ j MjF (−12EI / L3 ) ∆i (−6EI / L2 )θ i (6EI / L2 ) ∆i (2EI / L)θ i 0  AE/ L  0 12 EI/ L3   0 6EI/ L2  0 − AE/ L  0 − 12 EI/ L3  6EI/ L2  0  0 6EI/ L2 4 EI/ L 0 − 6EI/ L2 2EI/ L − AE/ L 0 − 12 EI/ L3 0 − 6EI/ L2 0 0 AE/ L 0 12 EI/ L3 − 6EI/ L2 0 Stiffness matrix F 0  δ i   Fxi     F  6EI/ L2   ∆i   Fyi  2EI/ L  θ i  MiF    +  F  0  δ j   Fxj  F − 6EI/ L2   ∆ j   Fyi     F  4 EI/ L  θ j  M j      Fixed-end force matrix [q] = [k][d] + [qF] End-force matrix Displacement matrix 27
  • 28. 6x6 Stiffness Matrix δi [k ]6×6 = ∆i θi Ni  AE/ L 0 Vi  0 12 EI/ L3  Mi  0 6EI/ L2  Nj − AE/ L 0 Vj  0 − 12 EI/ L3  6EI/ L2 Mj  0  δj ∆j − AE/ L 0 − 12 EI/ L3 0 0 6EI/ L2 4 EI/ L 0 − 6EI/ L2 0 AE/ L 0 − 6EI/ L2 0 12 EI/ L3 2EI/ L 0 − 6EI/ L2 θj 0  6EI/ L2   2EI/ L   0  − 6EI/ L2   4EI/ L   4x4 Stiffness Matrix ∆i [k ]4×4 = Vi  12 EI/ L3  Mi  6EI/ L2 Vj − 12 EI/ L3  2 Mj  6EI/ L θi 6EI/ L2 4 EI/ L − 6EI/ L2 2EI/ L ∆j − 12 EI/ L3 − 6EI/ L2 12 EI/ L3 − 6EI/ L2 θj 6EI/ L2   2EI/ L  − 6EI/ L2   4 EI/ L  28
  • 29. 2x2 Stiffness Matrix θi [k ]2×2 = Mi Mj θj 4 EI / L 2EI / L    2EI / L 4 EI / L Comment: - When use 4x4 stiffness matrix, specify settlement. - When use 2x2 stiffness matrix, fixed-end forces must be included. 29
  • 30. General Procedures: Application of the Stiffness Method for Beam Analysis P2y P M2 M1 2 Global 1 4 1 6 3 2 2 1 3 2´ Local w 4´ 5 2´ 1 1´ 4´ 2 3´ 1´ 3´ 30
  • 31. P2y P M2 M1 2 Global 1 4 1 6 3 2 2 1 3 2 Member w 4 5 4 1 6 2 1 3 3 5 2´ 4´ 2´ 4´ Local 1 1´ 2 3´ 1´ 3´ 31
  • 32. P2y P M2 M1 2 4 1 Global w 1 3 2 2 1 6 3 2´ 4´ Local 5 2´ 1 1´ 4´ 2 3´ 1´ 3´ P (q´F 2)1 [FEF] 1 (q´F1 )1 w (q´F1)2 (q´F4 )2 (q´F4)1 (q´F3)1 2 (q´F2)2 (q´F3 )2 32
  • 33. 2 Global 4 1 1 3 2´ 3 2 2 1 6 5 4´ Local 1 1´ 3´ [q] = [T]T[q´] q1  q   2 = q3     q4  1 1 2 3 4 1´ 1 0  0  0 2´ 0 1 0 0 3´ 0 0 1 0 4´ 0 0  0  1 q1'  q   2'  q3'     q4 '  [k] = [T]T[q´] [T] 33
  • 34. 2 Global 4 1 1 6 2 1 3 2 3 5 2´ Local 4´ 2 1´ 3´ [q] = [T]T[q´] q3  q   4 = q5    q6  2 3 4 5 6 1´ 1 0  0  0 2´ 0 1 0 0 3´ 0 0 1 0 4´ 0 0  0  1 q1'  q   2'  q3'     q4 '  [k] = [T]T[q´] [T] 34
  • 35. 2 4 1 1 6 2 1 3 2 3 5 Stiffness Matrix: 1 2 3 4 1 [k]1 = 1 2 1 3 2 4 3 3 [k]2 = 4 4 5 6 [K] = 3 4 5 6 2 3 4 5 6 Member 1 Node 2 Member 2 5 6 35
  • 36. 2 1 Joint Load Qk 1 6 2 2 1 M Q 2 1z  -P2y Q3    M3z Q 4   = Q1   Q 5    Q6     Reaction Qu 4 3 3 Du=Dunknown 5 2 3 4 1 5 6 2   3  4   1  5    6  KAA KBA   KAB      KBB    D2  Q 2F  D   F   3  Q 3  F D 4  Q 4   0 +  F  D1  Q1  D5 0  Q F   0   5F  D6  Q 6      Dk = Dknown [Q k ] = [K AA ][Du ] + [Q AF ] QFA QFB F [Du ] = [K AA ]−1 + ([Qk ] − [QA ]) [ ] Member Force : [q ] = [k ][d ] + q F 36
  • 37. 2 Global: 4 1 1 3 5 (qF2)1 (qF [FEF]       5   6   1 2 3 4 2 3 5 6 Member 1  Q2 = M 1  2 Q = − P   2y  = 3  3   Q4 = M 2    4  (q´F6 )2 (qF3)2 4 Node 2 Member 2 2 3 4    Node 2   w 2 (qF3)1 (qF1 )1 Q1   M  Q 2 1  Q 3 -P2y   M =  Q 4 2  Q 5    Q6     4)2 (qF4)1 1 1 3 2 2 P 1 6           D1 0   D2   D3   + D4   D5 0  0 D6    D2  Q 2F  D   F   3  + Q 3  F D4  Q 4      (q´F5 )2   Q1F   Q 2F   F F F Q 3 = (q 3 ) 1 + (q 3 ) 2   F  Q 4 = (q 4F ) 1 + (q 4F ) 2     Q 5F   Q 6F     37
  • 38. 2 1 4 1 3 2 2 D2    D3  = 3    D4  4    3 3 2 2 1 6 5 4    Node 2     Q2 = M 1  Q2F      Q3 = − P2y  − Q3F       Q = M  Q F   2   4   4 38
  • 39. 2 4 1 1 6 2 1 3 2 3 5 P qF2 qF4 1 qF1 [FEF] qF3 Member 1: 1 q 1    2 q 2  = q 3  3   4 q 4  1       2 3 k1 4   d1 = 0    d 2 = D2   +  d 3 = D3     d 4 = D4  q 1F   F q 2  F q 3   F q 4    39
  • 40. 2 4 1 1 6 2 1 3 2 3 5 w qF6 qF4 2 qF3 [FEM] qF5 Member 2:  q3  q   4 q5    q6  1 = 2 3 4 1       2 3 k1 4       F q3   d 3 = D3   F d = D  q 4 4  +  4 F q5   d5 = 0   F   d6 = 0   q6     40
  • 41. Example 1 For the beam shown, use the stiffness method to: (a) Determine the deflection and rotation at B. (b) Determine all the reactions at supports. (c) Draw the quantitative shear and bending moment diagrams. 10 kN 1 kN/m B A 9m C 1.5 m 3m 41
  • 42. 10 kN 1 kN/m C B A 1.5 m 3m 9m 3 2 Global 1 2 3 2 Members 1 1 2 2 1 10 kN 1 kN/m 1.5 m [FEF] wL2/12 = 6.75 9m 1 wL2/12 = 6.75 PL/8 = 3.75 1.5 m 2 PL/8 = 3.75 42
  • 43. 3 2 1 1 2 9m 3m Stiffness Matrix: θi Mi Mj [k ]2×2 = 4 EI / L 2EI / L    2EI / L 4 EI / L 3 [k]1= EI θj 2 2 4/9 2/9 3 2/9 4/9 2 2 [K] = EI 4/3 2/3 2 2/3 [k]2 = EI 1 4/3 1 1 (4/9)+(4/3) 2/3 2 2/3 1 4/3 43
  • 44. 3 2 10 kN 1 1 kN/m A 6.75 6.75 9m B 3.75 1.5 m 1.5 m C Equilibrium equations: MCB = 0 MBA + MBC = 0 Global Equilibrium: [Q] = [K][D] + [QF] 2 2 MBA + MBC = 0 1 MCB = 0 θB θC = = EI 1 2 (4/9)+(4/3) 2/3 θB 1 2/3 θC 4/3 + -6.75 + 3.75 = -3 -3.75 0.779/EI 2.423/EI 44
  • 45. 3 2 1 1 kN/m [FEF] 9m wL2/12 = 6.75 1 wL2/12 = 6.75 Substitute θB and θC in the member matrix, Member 1 : [q]1 = [k]1[d]1 + [qF]1 3 3 MAB 2 MBA = EI 2 0 4/9 2/9 θA 2/9 4/9 = θB 0.779/EI 6.75 + -6.75 1 kN/m 4.56 kN = -6.40 6.40 kN•m 6.92 kN•m 9m 6.92 1 4.44 kN 45
  • 46. 10 kN 1 2 1.5 m 2 PL/8 = 3.75 1.5 m 2 PL/8 = 3.75 [FEF] Substitute θB and θC in the member matrix, Member 2 : [q]2 = [k]2[d]2 + [qF]2 2 2 MBC 1 MCB = EI 1 4/3 2/3 θB = 0.779/EI 2/3 4/3 θC = 2.423/EI + 3.75 -3.75 6.40 = 0 10 kN 6.40 kN•m 2 7.13 kN 2.87 kN 46
  • 47. 10 kN 1 kN/m 6.40 6.40 6.92 4.56 kN 4.44 kN 1 kN/m 6.92 kN•m 7.13 kN θB = +0.779/EI 10 kN 2.87 kN θC = +2.423/EI C A 4.56 kN B 9m 11.57 kN 2.87 kN 1.5 m 1.5 m 7.13 4.56 V (kN) x (m) 4.56 m -4.44 M (kN•m) -6.92 -2.87 4.32 3.48 x (m) -6.40 47
  • 48. Example 2 For the beam shown, use the stiffness method to: (a) Determine the deflection and rotation at B. (b) Determine all the reactions at supports. 20 kN 9kN/m 40 kN•m EI 2EI A B 4m C 4m 48
  • 49. 2 4 1 3 2EI 1 1 [k ] = Vi  12 EI/ L3 Mi  6EI/ L2  Vj  − 12 EI/ L3 Mj  6EI/ L2  EI θi ∆j 2 4 EI/ L − 6EI/ L 2EI/ L 2 − 12 EI/ L − 6EI/ L2 12 EI/ L3 − 6EI/ L2 6EI/ L   2EI/ L  − 6EI/ L2   4 EI/ L  3 1 0.375EI 2 0.75EI 3 4 2 3 4 -0.75EI EI -0.375EI -0.75EI 0.375EI -0.75EI 0.75EI EI 3 0.5625 -0.375 [K] = EI 4 -0.375 3 [k]2 0.75EI - 0.375EI 0.75EI 2EI 4 2 [k]1 1 3 θj 3 6EI/ L 5 2 2 Use 4x4 stiffness matrix, ∆i 6 -0.75EI 2EI 3 3 4 5 6 4 5 6 0.1875EI 0.375EI - 0.1875EI 0.375EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI EI 49
  • 50. 20 kN 9kN/m 12 kN•m 18 kN 4m 40 kN•m 12 kN•m 18 kN 2 4 1 Global: 4 Q4 = 40 D3 D4 = 2 0.5625 -0.375 4 -0.375 3 4 3 5 EI 2 3 = EI 6 3 2EI 1 1 [Q] = [K][D] + [QF] 3 Q3 = -20 4m 3 D3 D4 18 + 3 -12 4 -61.09/EI 9.697/EI 50
  • 51. 2 4 1 3 2EI 1 1 9 kN/m 12 kN•m A B 1 2 [qF]1 18 kN Member 1: 12 kN•m 18 kN [q]1 = [k]1[d]1 + [qF]1 1 q1 1 q2 2 q3L 3 q4L 4 2 3 4 12(2EI)/430.75EI - 0.375EI 0.75EI 0.75EI 2EI -0.75EI EI -0.375EI -0.75EI 0.375EI -0.75EI 0.75EI EI -0.75EI 2EI 9 kN/m A 67.51 kN•m 48.18 kN 1 [q]1 d1 = 0 18 48.18 d2 = 0 12 67.51 d3 = -61.09/EI 18 -12.18 d4 = 9.697/EI -12 53.21 53.21 kN•m B 12.18 kN 51
  • 52. 4 6 3 5 EI 2 2 3 Member 2: [q]2 = [k]2[d]2 + [qF]2 3 q3R 3 q4R 4 q5 5 q6 6 4 5 6 0.1875EI 0.375EI - 0.1875EI 0.375EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI 7.82 kN 0 -7.818 d4 = 9.697/EI 0 -13.21 d5 = 0 0 7.818 d6 = 0 0 -18.06 18.06 kN•m 13.21 kN•m B EI d3 =-61.09/EI 2 [q]2 C 7.82 kN 52
  • 53. 9 kN/m A 67.51 kN•m 48.18 kN 53.21 kN•m B B 1 12.18 kN [q]1 18.06 kN•m 13.21 kN•m C 2 7.82 kN 7.82 kN [q]2 20 kN 9kN/m 40 kN•m D3 = ∆B = -61.09/EI 67.51 kN•m 48.18 kN 48.18 4m D4 = θB = +9.697/EI 4 m + V (kN) 18.06 kN•m 7.818 kN 12.18 x (m) M (kN•m) + - -67.51 -7.818 -7.818 53.21 13.21 - x (m) -18.08 53
  • 54. Example 3 For the beam shown, use the stiffness method to: (a) Determine the deflection and rotation at B. (b) Determine all the reactions at supports. 20 kN 9kN/m 10 kN 40 kN•m EI 2EI A B 4m C 2m 2m 54
  • 55. 20 kN 9kN/m A 40 kN•m 2EI 4m B 4 1 3 1 1 18 kN ∆i = 1 Vi  12 EI/ L3 Mi  6EI/ L2  Vj  − 12 EI/ L3 Mj  6EI/ L2  5 3 10 kN 12 kN•m [FEF] 6 2 2 9 kN/m 12 kN•m [k ]4×4 C EI 2m 2m 2 Global 10 kN θi ∆j 6EI/ L2 − 12 EI/ L3 − 6EI/ L2 12 EI/ L3 − 6EI/ L2 − 6EI/ L2 2EI/ L 5 kN•m 2 18 kN 4 EI/ L 5 kN•m 5 kN θj 6EI/ L2   2EI/ L  − 6EI/ L2   4 EI/ L  5 kN 55
  • 56. 2 4 1 3 1 1 1 1 [k]1 = 2 3 4 0.75EI 0.75EI 0.1875EI 4 0.375EI 6 3 2m 2m 3 4 2EI -0.75EI EI 3 -0.375EI -0.75EI 0.375EI -0.75EI 3 5 2 12(2EI)/43 0.75EI - 0.375EI 0.75EI 3 [k]2 = 5 2 4m 2 6 EI 4 6 3 -0.75EI 2EI/L 5 4 [K] = EI 6 0.5625 -0.375 0.375 4 6 -0.375 0.375 3 0.5 0.5 1 0.375EI - 0.1875EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI EI 56
  • 57. 20 kN 9kN/m 10 kN 40 kN•m A C 6 2 B4 1 3 1 1 5 2 2 10 kN 9 kN/m 12 kN•m 12 kN•m [FEF] 1 18 kN 5 kN•m 3 4 5 kN 5 kN 6 3 VBL+VBR = -20 MBA+MBC = 40 = EI MCB = 0 ∆B θB θC 5 kN•m 2 18 kN Global: [Q] = [K][D] + [QF] 3 0.5625 -0.375 0.375 ∆B 4 6 -0.375 0.375 3 0.5 0.5 1 θB θC + 18 + 5 = 23 -12 + 5 = -7 -5 -116.593/EI = -7.667/EI 52.556/EI 57
  • 58. 2 4 1 3 1 1 9 kN/m 12 kN•m 2 12 kN•m 18 kN 1 18 kN [FEF] [q]1 = [k]1[d]1 + [qF]1 Member 1: 1 2 3 4 VA 1 0.375EI 0.75EI - 0.375EI 0.75EI 0 18 55.97 MAB 2 0.75EI 0 12 91.78 VBL MBA = 3 4 2EI -0.75EI EI -0.375EI -0.75EI 0.375EI -0.75EI ∆B =-116.593/EI 0.75EI EI -0.75EI 2EI/L θB =-7.667/EI + 18 -12 = -19.97 60.11 9kN/m 91.78 kN•m 4m 55.97 kN 1 60.11 kN•m 19.97 kN 58
  • 59. 4 6 3 10 kN 5 3 2 2 2 5 kN Member 2: VBR 3 0.1875EI MBC 4 4 0.375EI MCB = 5 6 [FEM] 5 kN [q]1 = [k]1[d]1 + [qF]1 3 VC 5 kN•m 5 kN•m 5 6 0.375EI - 0.1875EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI EI ∆B =-116.593/EI 5 -0.0278 θB =-7.667/EI 5 -20.11 0 θC =52.556/EI + 5 -5 = 10.03 0 10 kN 20.11 kN•m 2m 2m 2 0.0278 kN 10.03 kN 59
  • 60. 9kN/m 91.78 kN•m 10 kN 20.11 kN•m 2m 1 4m 19.97 kN 55.97 kN 60.11 kN•m 20 kN 9kN/m 2m 2 0.0278 kN 10.03 kN 10 kN θC = 52.556/EI 40 kN•m 91.78 kN•m 55.97 kN θB = -7.667/EI 10.03 kN ∆B = -116.593/EI 4m 55.97 2m 2m 19.97 + V (kN) 60.11 M (kN•m) -91.78 + - -0.0278 -10.03 x (m) -10.03 20.11 x (m) 60
  • 61. Example 4 For the beam shown: (a) Use the stiffness method to determine all the reactions at supports. (b) Draw the quantitative free-body diagram of member. (c) Draw the quantitative shear diagram, bending moment diagram and qualitative deflected shape. Take I = 200(106) mm4 and E = 200 GPa and support B settlement 10 mm. 40 kN 6 kN/m B A 2EI 8m EI ∆B = -10 mm 4m C 4m 61
  • 62. 1 2 3 2EI EI 2 1 θi Use 2x2 stiffness matrix: [k ]2×2 = 1 [k]1 = EI 8 8 4 2 4 8 4 EI / L 2EI / L    2EI / L 4 EI / L 2 1 Mi Mj θj 2 [k]2 = 2 [K] = EI 8 12 2 4 2 3 2 4 2 3 2 3 2 EI 8 3 4 62
  • 63. 40 kN 6 kN/m 1 B A 2 C EI ∆B = -10 mm 4m 4m 2EI 8m 2 1 40 kN 6 kN/m [FEM]load wL2/12 = 32 kN•m 1 32 kN•m 10 mm 6(2EI)∆/L2 = 75 kN•m 2 Q2 = 0 Q3 = 0 D2 D3 40 kN•m 37.5 kN•m 10 mm 6(EI)∆/L2 = 37.5 kN•m [Q] = [K][D] +2[QF] Global: 2 PL/8 = 40 kN•m 75 kN•m 1 [FEM]∆ 3 3 2 12 2 D2 3 2 4 D3 EI = 8 -61.27/EI = 185.64/EI + -32 + 40 + 75 -37.5 = 45.5 -40 - 37.5 = -77.5 rad rad 63
  • 64. 1 2 6 kN/m [FEM]load 2EI wL2/12 = 32 kN•m 1 1 32 kN•m 75 kN•m 1 [FEM]∆ 10 mm 6(2EI)∆/L2 = 75 kN•m Member 1: [q]1 = [k]1[d]1 + [qF]1 1 q1 q2 EI = 8 2 1 8 4 d1 = 0 2 4 8 d2 = -61.27/EI 76.37 kN•m 6 kN/m 32 + 75 = 107 + -32 + 75 = 43 76.37 kN•m = -18.27 kN•m 18.27 kN•m 8m 1 31.26 kN 16.74 kN 64
  • 65. 2 3 40 kN [FEM]load 2 PL/8 = 40 kN•m 2 40 kN•m 37.5 kN•m 2 [FEM]∆ 10 mm 6(EI)D/L2 = 37.5 kN•m Member 2: [q]2 = [k]2[d]2 + [qF]2 2 q2 q3 = EI 8 3 2 4 2 d2 = -61.27/EI 3 2 4 d3 = 185.64/EI 40 - 37.5 = 2.5 + -40 - 37.5 = -77.5 18.27 kN•m = 0 kN•m 40 kN 18.27 kN•m 2 22.28 kN 17.72 kN 65
  • 66. 2 6 4 2EI EI 2 1 1 Alternate method: Use 4x4 stiffness matrix [k]1 3 4 1.5 -0.375 1.5 8 -1.5 4 -1.5 0.375 -1.5 4 1 -1.5 2 1 12(2)/82 EI 2 1.5 = 8 3 -0.375 4 1.5 5 3 3 = 3 12/82 4 0.75 EI 8 5 4 0.75 2 1 2 0.375 1.5 1.5 8 -0.375 -1.5 EI 3 = 8 4 5 -0.375 -1.5 0.5625 1.5 0 4 0 -0.75 -0.1875 12 -0.75 -0.75 0.1875 6 0 0 0.75 2 -0.75 4 5 6 -0.1875 0.75 -0.75 2 0.1875 -0.75 -0.75 4 2 -0.75 1.5 4 5 2 1 [K] 4 0.75 -0.1875 -0.75 6 8 3 4 [k]2 6 0 0 0 0 -0.75 -0.1875 0.75 66
  • 67. 40 kN 6 kN/m 2 B A C EI ∆B = -10 mm 2EI 8m 4m 1 32 kN•m 40 kN•m Q6= 0 Q4 = 0 Q6= 0 D4 D6 5 D4 4 6 D6 12 2 D4 2 4 D6 12 EI 4 = 8 6 2 4 20 kN 20 kN 2 EI 4 = 8 6 = 40 kN•m 2 1 24 kN 24 kN Global: [Q] = [K][D] + [QF] 4 6 Q4 = 0 5 3 40 kN 32 kN•m [FEF] 2 1 4m 6 kN/m 6 4 200 × 200 4 +( ) 8 6 + -0.75 D = -0.01 5 -0.75 (200x200/8)(-0.75)(-0.01) = 37.5 (200x200/8)(0.75)(-0.01) = -37.5 -61.27/EI = -1.532x10-3 rad + -40 8 -40 rad 185.64/EI = 4.641x10-3 + 8 67
  • 68. 2 4 1 32 kN•m ∆B = -10 mm 1 6 kN/m 32 kN•m [FEF]load 3 1 24 kN 24 kN Member 1: [q]1 = [k]1[d]1 + [qF]1 2 1 1 12(2)/82 2 1.5 q1 q2 3 4 1.5 -0.375 1.5 d1 = 0 24 8 -1.5 4 d2 = 0 32 (200x200) 3 8 -0.375 -1.5 0.375 -1.5 q4 4 1.5 4 -1.5 8 q1 31.26 q3 q2 q3 q4 = = kN 76.37 kN•m 16.74 kN -18.27 kN•m 76.37 kN•m + d3 = -0.01 -32 d4 = -1.532x10-3 6 kN/m 24 18.27 kN•m 8m 1 31.26 kN 16.74 kN 68
  • 69. 40 kN 6 4 40 kN•m 40 kN•m -10 mm = ∆B [FEF] 2 3 5 2 20 kN 20 kN Member 2: 3 3 12/82 4 0.75 q3 q4 q5 = 4 (200x200) 5 8 0.75 4 -0.1875 -0.75 q6 6 q3 22.28 kN q4 18.27 kN•m 17.72 kN•m 6 -0.1875 -0.75 0.75 2 0.1875 -0.75 kN 0 5 q5 q6 = 0.75 2 -0.75 4 d3 = -0.01 20 d4 = -1.532x10-3 40 d5 = 0 + d6 = 4.641x10-3 20 -40 40 kN 18.27 kN•m 2 22.28 kN 17.72 kN 69
  • 70. 40 kN 6 kN/m B 76.37 kN•m EI ∆B = -10 mm 17.72 kN 16.74 + 22.28 kN 8m 4m 4m A 2EI 31.26 kN V (kN) C 31.26 + - 5.21 m 22.28 + -16.74 -17.72 x (m) 70.85 M (kN•m) 5.06 - + - -18.27 x (m) -76.37 Deflected Curve ∆B = -10 mm d4 = θB = -1.532x10-3 rad D6 = θC = 4.641x10-3 rad 70
  • 71. Example 5 For the beam shown: (a) Use the stiffness method to determine all the reactions at supports. (b) Draw the quantitative free-body diagram of member. (c) Draw the quantitative shear diagram, bending moment diagram and qualitative deflected shape. Take I = 200(106) mm4 and E = 200 GPa and support C settlement 10 mm. 4 kN 0.6 kN/m 20 kN•m B A EI 2EI 8m 4m C ∆C = -10 mm 4m 71
  • 72. 2 2EI 1 •Member stiffness matrix [k]4x4 1 1 12(2)/82 EI 2 1.5 = 8 3 -0.375 4 1.5 [k]1 6 4 EI 2 1 5 3 3 4 1.5 -0.375 1.5 8 -1.5 4 -1.5 0.375 -1.5 4 -1.5 2 3 EI = 8 6 8 4 3 12/82 4 0.75 5 -10 mm [k]2 0.75 4 -0.1875 -0.75 0.75 2 5 6 -0.1875 0.75 -0.75 2 0.1875 -0.75 -0.75 4 • Global: [Q] = [K][D] + [QF] 3 Q3 Q4 Q6 3 EI 4 = 8 6 4 6 0.5625 -0.75 -0.75 12 0.75 2 D3 D4 0.75 2 4 D6 5 QF3 3 -0.1875 200 × 200 +( ) 4 -0.75 D5 = -0.01 + QF4 8 QF6 6 -0.75 72
  • 73. 4 kN 0.6 kN/m 20 kN•m B A EI 2EI 8m 4m 10 mm 4m D3 D4 D6 = 5 4 kN•m 2 2 kN 3 Q6 = 20 4 kN•m 1 3 EI 4 = 8 6 EI 3 4 kN 2.4 kN 2.4 kN Global: [Q] = [K][D] + [QF] Q3 = 0 Q4 = 0 6 2 1 1 3.2 kN•m [FEF] 4 2EI C 0.6 kN/m 3.2 kN•m 2 4 6 0.5625 -0.75 -0.75 12 0.75 2 0.75 2 4 2 kN D3 9.375 D4 + 37.5 + D6 37.5 2.4+2 = 4.4 -3.2+4 = 0.8 -4.0 -377.30/EI = -9.433x10-3 m -61.53/EI = -1.538x10-3 rad +74.50/EI = +1.863x10-3 rad 73
  • 74. 2 4 0.6 kN/m 3.2 kN•m 1 1 [FEF]load 3 3.2 kN•m 8m 1 2.4 kN 2.4 kN Member 1: [q]1 = [k]1[d]1 + [qF]1 2 1 q1 q2 q3 q4 1.5 -0.375 1.5 d1 = 0 2.4 8 -1.5 4 d2 = 0 3.2 200× 200 3 8 -0.375 -1.5 0.375 -1.5 d3 = -9.433x10-3 1.5 4 -1.5 8 d4 = -1.538x10-3 q1 q3 4 4 = q4 q2 1 12(2)/82 2 1.5 3 8.55 = kN 43.19 kN•m -3.75 kN 6.03 kN•m 43.19 kN•m 0.6 kN/m + 2.4 -3.2 6.03 kN•m 8m 1 8.55 kN 3.75 kN 74
  • 75. 4 kN 6 4 4 kN•m 4 kN•m [FEF] 2 3 5 8m 10 mm 2 2 kN 2 kN Member 2: 3 q3 q4 q5 200× 200 = 8 q6 4 3 12/82 4 0.75 5 6 0.75 4 -0.1875 -0.75 0.75 q3 3.75 kN q4 -6.0 kN•m 0.25 kN•m 6 -0.75 0.75 d3 = -9.433x10-3 2 2 -0.1875 d4 = -1.538x10-3 4 0.1875 -0.75 -0.75 4 q5 q6 = d5 = -0.01 + d6 = 1.863x10-3 2 -4 4 kN kN 20.0 2 5 6.0 kN•m 20 kN•m 2 3.75 kN 0.25 kN 75
  • 76. 4 kN 0.6 kN/m 20 kN•m B A EI 2EI 8m 0.6 kN/m 43.19 kN•m 4m Deflected Curve 4 kN 20 kN•m 6.0 kN•m 3.75 kN 8.55 V (kN) M (kN•m) 10 mm 4m 6.03 kN•m 8m 1 8.55 kN C + 2 3.75 6 -0.25 21 + -43.19 0.25 kN 3.75 kN D3 = -9.433 mm D4 = -1.538x10-3 rad x (m) 20 x (m) D5 = -10 mm D6 = +1.863x10-3 rad 76
  • 77. Internal Hinges Example 6 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. E = 200 GPa, I = 50x10-6 m4. 30 kN 9kN/m Hinge EI 2EI A 4m B C 2m 2m 77
  • 78. 3 4 2 2EI A 1 1 4m EI B 2m 2m θi Use 2x2 stiffness matrix, [k ]2×2 = 3 [k]1 = 2EI EI 1 EI Mi Mj 2EI θj 4 EI / L 2EI / L    2EI / L 4 EI / L  1 3 C 2 2 [k]2 = 2 1EI 4 0.5EI 1 [K] = EI 2.0 0.0 1EI 0.0 2 0.5EI 2 1 4 1.0 78
  • 79. 30 kN 9kN/m Hinge 3 4 2 A 1 [FEF] 1 A = 0.0 EI 15 kN•m C 2 1 2 2.0 0.0 D1 2 0.0 1.0 D2 0.0006 = 30 kN 15 kN•m B 1 D1 D2 B 12 kN•m B Global matrix: 0.0 1 9kN/m 12 kN•m C 2 + -12 15 rad -0.0015 rad 79
  • 80. 3 12 kN•m 1 A [FEF] 1 9kN/m 1 A B 12 kN•m B Member 1: 3 q3 q1 = 1 3 2EI EI 1 EI 2EI d3 = 0.0 d1 = 0.0006 + 12 -12 = 18 0.0 9 kN/m A 18 kN•m 22.5 kN 1 B 13.5 kN 80
  • 81. 4 B C 2 2 15 kN•m B 30 kN 15 kN•m C 2 Member 2: 2 q2 q4 = 2 4 1EI 0.5EI 4 0.5EI 1EI d2 = -0.0015 d4 = 0.0 + 15 -15 = 0.0 -22.5 30 kN C B 9.37 kN 22.5 kN•m 20.63 kN 81
  • 82. 30 kN 9 kN/m A 18 kN•m B 13.5 kN 13.5 kN 22.5 kN 9.37 kN C B 22.87 kN 22.5 kN•m 20.63 kN 9.37 kN 30 kN 9kN/m Hinge EI θBR= -0.0015 rad 2EI θBL= 0.0006 rad A 4m B 2m C 2m 22.5 V (kN) 9.37 + 2.5 m M (kN•m) -13.5 10.13 + - -18 x (m) -20.63 18.75 + - x (m) -22.5 82
  • 83. Example 7 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. E = 200 GPa, I = 50x10-6 m4. 20 kN 9kN/m 2EI A B 4m EI Hinge C 4m 83
  • 84. 5 7 4 1 3 2EI 1 A 2 2 B 4 1 5 4 0.375EI 5 [k]1 = 1 0.75EI 2EI -0.375EI -0.75EI 2 0.75EI EI 1 [k]2 = 0.1875EI 3 0.375EI 6 7 C 2 0.75EI - 0.375EI 0.75EI -0.75EI EI 0.375EI -0.75EI -0.75EI 2EI/L 3 6 1 2 3 7 1 0.5625 -0.75 0.375 EI 2 -0.75 2.0 0 3 [K] = 1 6 EI 0.375 0.0 1.0 0.375EI - 0.1875EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI EI 84
  • 85. 20 kN B 9kN/m A C 5 4 1 3 2EI 1 A 12 kN•m Global: B 1 [FEM] 1 Q1 = -20 2 2 C 12 kN•m 18 kN 3 1 = 0.5625 -0.75 0.375 D1 EI 2 -0.75 2.0 0 D2 3 Q2 = 0.0 0.375 0.0 1.0 D3 Q3 = 0.0 D1 D2 D3 6 EI 2 B 9kN/m A 18 kN 7 18 + -12 0.0 -0.02382 m = -0.008333 rad 0.008933 rad 85
  • 86. 5 9kN/m 4 2EI 2 1 A 1 12 kN•m A 18 kN B 12 kN•m B 1 [FEF] 18 kN Member 1: 4 1 5 q4 4 0.375EI q5 5 0.75EI 2EI 1 -0.375EI -0.75EI 0.75EI EI q1 q2 = 2 2 0.75EI - 0.375EI 0.75EI -0.75EI EI d4 = 0.0 18 d5 = 0.0 12 0.375EI -0.75EI d1 = -0.02382 -0.75EI d2 = -0.00833 107.32 kN•m A 2EI/L + 18 -12 44.83 = 107.32 -8.83 0.0 9kN/m 1 B 8.83 kN 44.83 kN 86
  • 87. 7 1 B 6 EI 2 3 C Member 2: 1 q1 1 0.1875EI q3 3 0.375EI q6 =6 q7 7 6 3 7 0.375EI - 0.1875EI 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI EI -0.375EI C B 2 11.16 kN d1 = -0.02382 0 d3 = 0.008933 0 d6= 0.0 d7= 0.0 + 0 0 -11.16 = 0.0 11.16 -44.66 44.66 kN•m 11.16 kN 87
  • 88. 20 kN 9kN/m θBL= -0.008333 rad B A θBR= 0.008933 rad C 4m 4m 9kN/m 107.32 kN•m A B 1 44.83 kN C B 2 8.83 kN 44.66 kN•m 11.16 kN 11.16 kN 44.83 V (kN) + 8.83 x (m) -11.16 -11.16 M (kN•m) -107.32 - x (m) -44.66 88
  • 89. Example 8 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. 40 kN•m at the end of member AB. E = 200 GPa, I = 50x10-6 m4. 30 kN 9kN/m A Hinge 2EI 4m 40 kN•m EI B 2m C 2m 89
  • 90. 3 4 2 2EI A 1 1 4m C 2 B 2m 2m θj θi Use 2x2 stiffness matrix: [k ]2×2 = 3 [k]1 = EI 2EI EI 1 EI 2EI 4 EI / L 2EI / L    2EI / L 4 EI / L  1 3 Mi Mj 2 [k]2 = 2 1EI 4 0.5EI 1 [K] = EI 2.0 0.0 1EI 0.0 2 0.5EI 2 1 4 1.0 90
  • 91. 30 kN 9kN/m Hinge A 2EI 3 40 kN•m EI B C 4 2 A 1 [FEM] 1 A = Q2 = 0.0 EI 15 kN•m C 2 1 2 2.0 0.0 D1 2 0.0 1.0 D2 0.0026 = 30 kN 15 kN•m B 1 D1 D2 B 12 kN•m B Global matrix: Q1 = 40 1 9kN/m 12 kN•m C 2 + -12 15 rad -0.0015 rad 91
  • 92. 3 12 kN•m 1 A [FEF] 1 9kN/m 1 A B 12 kN•m B Member 1: 3 q3 q1 = 1 3 2EI EI 1 EI 2EI d3 = 0.0 d1 = 0.0026 + 12 -12 = 38 40 9 kN/m A 38 kN•m B 40 kN•m 37.5 kN 1.5 kN 92
  • 93. 4 B C 2 2 15 kN•m B 30 kN 15 kN•m C 2 Member 2: 2 q2 q4 = 2 1EI 4 0.5EI 4 0.5EI 1EI d2 = -0.0015 d4 = 0.0 + 15 -15 = 0.0 -22.5 30 kN C B 9.37 kN 22.5 kN•m 20.63 kN 93
  • 94. 1.5 kN 30 kN 9 kN/m A 38 kN•m B 40 kN•m 9.37 kN 7.87 kN 1.5 kN 37.5 kN C B 22.5 kN•m 20.63 kN 9.37 kN 30 kN 9kN/m 40 kN•m Hinge A θBL= 0.0026 B rad 4m C θBR=- 0.0015 rad 2m 2m 37.5 V (kN) + 9.37 1.5 x (m) -20.63 M (kN•m) 40 + - -38 18.75 + - x (m) -22.5 94
  • 95. Example 9 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. 40 kN•m at the end of member AB. E = 200 GPa, I = 50x10-6 m4 20 kN 9kN/m 2EI A 4m 40 kN•m B EI Hinge C 4m 95
  • 96. 20 kN 9kN/m 2EI A 40 kN•m B EI Hinge 4m C 4m 5 7 1 4 A 12 kN•m [FEM] 1 3 6 C 2 2 B 9 kN/m 12 kN•m 1 18 kN 18 kN [k ]4×4 = ∆i Vi  12 EI/ L3 Mi  2  6EI/ L Vj  − 12 EI/ L3 Mj  6EI/ L2  θi ∆j θj 6EI/ L2 − 12 EI/ L3 − 6EI/ L2 12 EI/ L3 − 6EI/ L2 6EI/ L2   2EI/ L  − 6EI/ L2   4 EI/ L  4 EI/ L − 6EI/ L2 2EI/ L 96
  • 97. 5 7 4 2EI A 1 4 4 [k]1 = 1 0.375EI 5 0.75EI 1 5 6 EI C 2 2 B 2 0.75EI - 0.375EI 0.75EI 1 -0.375EI 2EI -0.75EI 0.75EI EI 2 3 -0.75EI EI 0.375EI -0.75EI -0.75EI 1 2EI 2 3 1 1 3 6 0.375 EI 2 -0.75 2.0 0 0.375 0.0 1.0 7 1 [k]2 = -0.75 3 [K] = 0.5625 0.1875EI 3 0.375EI EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 6 7 0.375EI 0.375EI - 0.1875EI 0.375EI 0.5EI -0.375EI EI 97
  • 98. 9kN/m 20 kN 5 4 2EI A 1 C 2 2 B 1 18 kN 18 kN Global: 1 2 3 1 = Q3 = 0.0 D1 0.5625 -0.75 0.375 D1 EI 2 -0.75 2.0 0 D2 3 Q1 = -20 D3 6 EI 12 kN•m [FEF] D2 7 9 kN/m 12 kN•m Q2 = 40 EI 40 kN•m 1 3 0.375 0.0 1.0 D3 18 + -12 0.0 -0.01316 m = -0.002333 rad 0.0049333 rad 98
  • 99. 5 4 2 2EI 1 12 kN•m 1 5 4 0.375EI q5 5 0.75EI 2EI 1 -0.375EI -0.75EI 0.75EI EI q2 2 18 kN [q]1 = [k]1[d]1 + [qF]1 q4 q1 1 18 kN 4 = 12 kN•m [FEF] 1 Member 1: 9 kN/m 2 0.75EI - 0.375EI 0.75EI 87.37 kN•m -0.75EI EI d4 = 0.0 18 d5 = 0.0 12 0.375EI -0.75EI d1 = -0.01316 -0.75EI + d2 = -0.002333 2EI 2EI 49.85 kN 18 -12 49.85 = 87.37 -13.85 40 40 kN•m 1 13.85 kN [q]1 99
  • 100. 7 1 B Member 2: q1 1 0.1875EI q3 3 0.375EI =6 q7 7 C 2 3 [q]2 = [k]2[d]2 + [qF]2 1 q6 6 EI 6 3 7 0.375EI - 0.1875EI 0.375EI d1 = -0.01316 EI -0.375EI 0.5EI -0.1875EI -0.375EI 0.1875EI -0.375EI 0.375EI 0.5EI -0.375EI EI d3 = 0.004933 d6= 0.0 d7= 0.0 0 + -6.18 0 0.0 0 0 = 6.18 -24.69 24.69 kN•m 6.18 kN 2 6.18 kN [q]2 100
  • 101. 20 kN 9kN/m 40 kN•m EI θBR = 0.004933 rad C 4m 2EI θBL= -0.002333 rad A B 4m B A 87.37 kN•m 49.85 kN 40 kN•m 13.85 kN C B 24.69 kN•m 6.18 kN 6.18 kN 49.85 V (kN) + 13.85 x (m) - -6.18 -6.18 M (kN•m) + -87.37 40 - x (m) -24.69 101
  • 102. Temperature Effects • Fixed-End Forces (FEF) - Axial - Bending • Curvature 102
  • 103. tan β = • Thermal Fixed-End Forces (FEF) Room temp = TR T TR t F MA FBF Tm> TR FAF Tb > Tt A σaxial A d ct Tt β NA Tm = cb F MB B σaxial B σy Tb - Tt TR B Tl (∆T ) axial = Tm − TR y A Tt + Tb 2 Tm Tt y Tb − Tt ∆T =( ) d d ( ∆T y ) = y ( ∆T ) d β Tb (∆T ) bending = Tb − Tt 103
  • 104. - Axial σaxial σaxial Tt Tm> TR FAF A Tb > Tt TR Tm FBF B (∆T ) axial = Tm − TR FAF = ∫ σ axial dA A = ∫ Eε axial dA = ∫ Eα (∆T ) axial dA = Eα (∆T ) axial ∫ dA = EAα (∆T ) axial F ( Faxial ) A = α (Tm − TR ) AE 104
  • 105. - Bending σy Tt y y F MA A B F MB (∆Ty ) = y ( ∆T ) d β Tb (∆T ) bending = Tb − Tt M = ∫ yσ y dA F A A = ∫ yEε dA = ∫ yEα (∆Ty ) dA = ∫ yEαy ( = Eα ( ∆T ) dA d ∆T ) ∫ y 2 dA d F ( Fbending ) A = α ( Tl − Tu ) EI d 105
  • 106. • Elastic Curve: Bending O´ dθ ρ (dx ) = ρ ( dθ ) y ( dθ ) ds = dx y dx Before deformation y ds´ 1 ρ =( dθ ) dx dθ dx After deformation 106
  • 107. • Bending Temperature Tt O dx Tl > Tu Tb dθ Tt + Tb 2 M Tm = Tu ∆T = Tb - Tt Tt dθ y M ∆T β= d ct cb Tl > Tu Tb Tt ∆T y d y Tb ∆T ) dx d ∆T (dθ ) = α ( )dx d dθ M 1 ∆T ( ) = = α( ) = dx d EI ρ (dθ ) y = αy ( 107
  • 108. Example 10 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. Room temp = 32.5oC, α = 12x10-6 /oC, E = 200 GPa, I = 50x10-6 m4. T2 = 40oC 182 mm A T1 = 25oC 4m EI 2EI B C 4m 108
  • 109. T2 = 40oC 182 mm A T1 = 25oC 4m 2 B C 4m 3 1 1 FEM EI 2EI 2 Mean temperature = (40+25)/2 = 32.5 Room temp = 32.5oC 19.78 kN•m a(∆T /d)EI = 19.78 kN•m oC +7.5 F Fbending = α ( -7.5 oC ∆T 40 − 25 )(2 EI ) = (12 × 10 −6 )( )(2 × 200 × 50) = 19.78 kN • m d 0.182 109
  • 110. 2 19.78 kN•m 19.78 kN•m 182 mm A 1 2 2EI 1 3 B 4m 4m [q] = [k][d] + [qF] Element 1: 2 M2 M1 = 1 2 2 1 q2 1 1 2 q1 1 3 1 EI 1 0.5 q1 3 0.5 1 q3 Element 2: M1 M3 = EI EI C + + -1.978 1.978 (10-3) EI 0 0 0 [M1] = 3EIθ1 + (1.978x10-3)EI θ1 = -0.659x10-3 rad 110
  • 111. 2 19.78 kN•m 19.78 kN•m A 182 mm 2EI 1 3 1 2 EI B 4m C 4m Element 1: 2 M2 M1 = 2 EI 1 2 1 q2 = 0 1 1 2 q1 = -0.659x10-3 Element 2: M1 M3 = + 1 0.5 q1 = -0.659x10-3 3 0.5 1 q3 = 0 19.78 = -26.37 kN•m 6.59 kN•m 3 1 EI 1 -19.78 26.37 kN•m A 6.59 kN•m B 4.95 kN 4.95 kN + 0 0 6.59 kN•m B = -6.59 kN•m -3.30 kN•m 3.3 kN•m C 2.47 kN 2.47 kN 111
  • 112. 26.37 kN•m +7.5 oC A 4.95 kN -7.5 oC B C 2.47 kN 4m 4m 2.47 kN V (kN) 3.3 kN•m x (m) -2.47 -4.95 26.37 M (kN•m) Deflected curve + 6.59 - θB = -0.659x10-3 rad x (m) -3.30 x (m) 112
  • 113. Example 11 For the beam shown, use the stiffness method to: (a) Determine all the reactions at supports. (b) Draw the quantitative shear and bending moment diagrams and qualitative deflected shape. Room temp = 28 oC, a = 12x10-6 /oC, E = 200 GPa, I = 50x10-6 m4, A = 20(10-3) m2 T2 = 40oC 182 mm A T1 = 25oC 4m EI, AE 2EI, 2AE B C 4m 113
  • 114. 6 5 9 T2 = 40oC A 4 T1 = 25oC 1 3 2 2EI 4m 1 B 8 2 EI 7 C 4m Element 1: (2 AE ) 2(20 ×10 −3 m 2 )(200 ×106 kN / m 2 ) = = 2(106 ) kN / m L ( 4 m) 4(2 EI ) 4 × 2(200 ×106 kN / m 2 )(50 ×10 −6 m 4 ) = = 20(103 ) kN • m L ( 4 m) 2(2 EI ) 2 × 2(200 ×106 kN / m 2 )(50 ×10 −6 m 4 ) = = 10(103 ) kN • m L ( 4 m) 6(2 EI ) 6 × 2(200 ×106 kN / m 2 )(50 ×10 −6 m 4 ) = = 7.5(103 ) kN L2 ( 4 m) 2 12(2 EI ) 12 × 2(200 ×106 kN / m 2 )(50 ×10 −6 m 4 ) = = 3.75(103 ) kN / m L3 ( 4 m) 3 114
  • 115. T2 = 40oC 182 mm A T1 = 25oC EI, AE 2EI, 2AE C B 4m 4m Fixed-end forces due to temperatures F Fbending = α ( ∆T 40 − 25 )(2 EI ) = (12 × 10 −6 )( )(2 × 200 × 50) = 19.78 kN • m d 0.182 Mean temperature(Tm) = (40+25)/2 = 32.5 oC , TR = 28 oC F Faxial = α (∆T ) AE = (12 × 10 −6 )(32.5 − 28)(2 × 20 × 10 − 3 m 2 )(200 × 10 6 kN / m 2 ) = 432 kN 432 kN 19.78 kN•m +12 oC A -3 oC 19.78 kN•m B 432 kN 115
  • 116. 6 9 T2 = 40oC 5 182 mm 1 4 A T1 = 3 2 2EI, 2AE 25oC 2 1 EI, AE 4m FEM Element 1: 432 kN [q] = [k][d] + 19.78 kN•m +12 oC -3 A [qF] 19.78 kN•m 432 kN oC 4 5 6 B 1 2 q4 4 2x106 0.00 0.00 - 2x106 0.00 q5 5 0.00 3750 7500 0.00 q6 6 0.00 7500 20x103 q1 q2 q3 = 7 C B 4m 8 1 0.00 3 0.00 0 432 7500 0 0.00 -7500 10x103 0 -19.78 -3750 + 0.00 2x106 0.00 0.00 d1 -7500 0.00 3750 -7500 d2 0.00 7500 10x103 0.00 -7500 20x103 d3 19.78 -2x106 0.00 2 0.00 -3750 3 0.00 -432 116
  • 117. 6 9 T2 = 40oC 5 182 mm 1 4 A T1 = 3 2 2EI, 2AE 25oC 8 2 1 7 C B 4m EI, AE 4m Element 2: [q] = [k][d] + [qF] 1 2 3 7 8 9 0.00 d1 0 -1875 3750 d2 0 0.00 -3750 5x103 d3 0 0.00 1x106 0.00 0.00 0 1875 -3750 0 0 -3750 10x103 0 0 q1 1 1x106 0.00 0.00 - 1x106 0.00 q2 2 0.00 1875 3750 0.00 q3 3 0.00 3750 10x103 q7 q8 q9 = 7 -1x106 0.00 8 0.00 -1875 -3750 0.00 9 0.00 5x103 0.00 3750 + 0 117
  • 118. 6 9 T2 = 40oC 5 182 mm 4 A 1 T1 = 2EI, 2AE 25oC 8 2 1 EI, AE 4m 1 Q2 = 0.0 Q3 = 0.0 D1 D2 D3 3 3x106 0.0 0.0 D1 2 0.0 5625 -3750 D2 3 = 2 1 Q1 = 0.0 0.0 -3750 30x103 D3 0.000144 = 7 C B 4m Global: 3 2 0.0 19.78 m -719.3x10-6 + m -0.0004795 -432 rad 118
  • 119. Element 1: 4 5 2 1 6 3 q4 4 2x106 0.00 0.00 - 2x106 0.00 0.00 0 432 q5 5 0.00 3750 7500 0.00 7500 0 0.00 q6 6 0.00 7500 20x103 -7500 10x103 0 -19.78 q1 = q2 q3 1 -3750 0.00 + 0.00 2x106 0.00 0.00 -7500 0.00 3750 -7500 d2 = -479.5x10-6 0.00 7500 10x103 0.00 -7500 20x103 d3 = -719.3x10-6 19.78 -2x106 0.00 2 0.00 -3750 3 0.00 d1 = 144x10-6 -432 6 q4 144.0 kN q5 -3.60 kN q6 -23.38 kN•m -144.0 kN 3.60 kN 9.00 kN•m q1 q2 q3 = 5 A 4 23.38 kN•m 144 kN A 3.60 kN 3 2 B 1 9 kN•m B 3.60 kN 144 kN 119
  • 120. Element 2: 1 2 3 7 8 9 0.00 d1 = 144x10-6 0 -1875 3750 d2 = -479.5x10-6 0 0.00 -3750 5x103 d3 = -719.3x10-6 0 0.00 1x106 0.00 0.00 0 1875 -3750 0 0 -3750 10x103 3 0 0 q1 1 1x106 0.00 0.00 - 1x106 0.00 q2 2 0.00 1875 3750 0.00 q3 3 0.00 37500 10x103 q7 q8 q9 = 7 -1x106 0.00 8 0.00 -1875 -3750 0.00 9 0.00 5x103 0.00 3750 q1 144 kN q2 -3.6 kN q3 -9 kN•m -144 kN 3.6 kN -5.39 kN•m q7 q8 q9 = 2 B 1 9 kN•m 144 kN B 3.60 kN + 0 9 8 C 7 5.39 kN•m C 3.60 kN 144 kN 120
  • 121. Isolate axial part from the system T2 = 40oC RA A T1 = 25oC EI 2EI B 4m RC RA C 4m RA = RC + Compatibility equation: dC/A = 0 R A (4) RA ( 4) + + 12 × 10 −6 (32.5 − 28)(4) = 0 AE 2 AE RA = 144 kN RC = -144 kN 121
  • 122. T2 = 40oC EI 2EI A T1 = 25oC 4m 4m 9 kN•m 23.38 kN•m 144 kN 144 kN A C B 144 kN 144 kN B 3.60 kN 3.60 kN 5.39 kN•m 9 kN•m B C 3.60 kN 3.60 kN V (kN) x (m) -3.6 23.38 M (kN•m) Deflected curve + 8.98 - D2 = -0.0004795 mm D3 = -719.3x10-6 rad x (m) -5.39 x (m) 122
  • 123. Skew Roller Support - Force Transformation - Displacement Transformation - Stiffness Matrix 123
  • 124. • Displacement and Force Transformation Matrices x´ 5´ y´ 6´ j 2´ 3´ 4´ m 1´ i y 6 5 θy 3 2 i 1 j θx 4 m x 124
  • 125. Force Transformation 6´ x´ θy 5´ y´ θy 2´ 3´ λx = 1´ i λy = y q6 = q6' x j − xi L y j − yi L 5 4 m 3 2 i 1 q 4  q   5 q 6    x − λy λx 0 0  1  q4'  q   5'  q6'    λx 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 λx λy 0 0 − λy λx 0 λx =  λy  0  q 1   λ x    q 2   λy q 3   0  = q 4   0 q 5   0    q 6   0    6 j q4 = q4' cos θ x − q5' cos θ y λy q5 = q4' cos θ y − q5' cos θ x 4´ j θx θx λx 0 − λy [q ] = [T ]T [q '] 0  q 1'    0  q 2'   0  q 3'    0  q 4'  0  q 5'    1  q 6'    125
  • 126. Displacement Transformation y 6 x´ θx os c d4 θx4´ d4 6´ j θy θy os c d4 5´ 5 4 j θy θx d5 d θy θy d 4'  d   5'  d 6'     λx = − λy   0  d 1'   λ x    d 2'  − λy d 3'   0  = d 4'   0 d 5'   0    d 6'   0    θy cos 5 d d ' 4 = d 4 cos θ x + d 5 cos θ y d '6 = d 6 θx os c 5 θx λy d' 5 = −d 4 cos θ y + d 5 cos θ x x y λx θx x 0 0  1  λy λx 0 d 4  d   5 d 6    λx 0 0 0 0 0 0 1 0 0 λx 0 − λy 0 0 λy 0 0 0 0 0 λy λx 0 0  d 1    0  d 2   0  d 3    0  d 4  0  d 5    1  d 6    [d '] = [T ][d ] 126
  • 127. [q ] = [T ]T [q '] [ ] = [T ] [k' ][d' ] + [T ] [q ' ] [q ] = [T ] [k' ][T ][d ] + [T ] [q' ] = [k ][d ] + [q ] = [T ] ([k' ][d' ] + q 'F ) T T T T Therefore, F T F F [k ] = [T ]T [k '][T ] [q ] = [T ] [q ' ] F T F [q ] = [T ]T [q '] [d '] = [T ][d ] [k ] = [T ]T [k '][T ] 127
  • 128. Stiffness matrix 2* 5* 3* 1* 3´ 6* 2´ 1 θi 4* i θj i j λjx = cos θj λiy = sin θi 4´ 1´ j λix = cos θi 6´ 5´ λjy = sin θj [q*] = [T]T[q´] q 1*  q   2*  q 3*    q 4 *  q 5*    q 6 *    1* 2* = 3* 4* 5* 6* 1  λix λ  iy 0  0 0  0  2 − λiy λix 0 0 0 0 3 0 0 1 0 0 0 4 5 0 0 0 0 0 0 λ jx − λ jy λ jy λ jx 0 0 6 0 0  0  0 0  1  q 1'  q   2'  q 3'    q 4'  q 5'    q 6'    [ T ]T 128
  • 129. 1 2 [T ] = 3 4 5 6 1 [k '] = 1 2 3 4 5 6 1 2 λiy  λix − λ  iy λix  0 0  0  0  0 0  0  0  2 0  AE/ L  0 12 EI/ L3   0 6EI/ L2  0 − AE/ L  0 − 12 EI/ L3  6EI/ L2  0  3 4 0 0 0 0 1 0 0 λ jx 0 − λ jy 0 0 3 0 6EI/ L2 4 EI/ L 0 − 6EI/ L2 2EI/ L 5 0 0 0 λ jy λ jx 0 4 6 0 0  0  0 0  1  5 − AE/ L 0 0 − 12 EI/ L3 0 − 6EI/ L2 0 AE/ L 0 12 EI/ L3 0 − 6EI/ L2 6   6EI/ L2  2EI/ L   0  2 − 6EI/ L  4 EI/ L   0 129
  • 130. [ k ] = [ T ]T[ k´ ][T] = Ui Ui ( AE Vi L ( AE Vj - ( Mj - L Mi Uj -( λix2 + - AE L AE L 12EI L3 12EI L3 6EI L2 λixλjx + λixλjy- - Vi 6EI L2 λiy2 ) ) λixλiy ( ( AE L AE L L3 12EI L3 λiy 12EI λiy2 + L2 λiy λjy) -( λiyλjx ) -( AE L AE L ) λixλiy L3 6EI λiy 12EI - λiyλjx - λiyλjy + 6EI L2 Uj Mi 12EI L3 - λix2 ) L3 12EI L3 λix λiy -( L2 6EI L2 λix -( AE L AE L λixλjx + L λixλjy) λix λjx ) - 6EI L2 6EI L2 λjy 6EI L2 λjx ( AE L ( AE L L3 L3 L3 L3 6EI L L2 AE λixλjy ) AE -( L L λjy λixλjy - λiyλjy + 6EI - 12EI 12EI 2EI λiyλjy ) -( λjy λjx2 + - 12EI 12EI λiyλjx - 4EI λix 12EI 6EI Vj λjy2 ) ) λjxλjy ( AE L2 - L Mj 12EI L3 12EI L3 6EI L2 λiy L2 λix L2 2EI L 6EI ) λjxλjy λjx 6EI 6EI λixλjx ) AE 12EI λjx2 ) ( L λjy2 + L3 - - λjx 12EI L3 λiyλjx ) λjy L2 - 6EI L2 λjx 4EI L 130
  • 131. Example 12 For the beam shown: (a) Use the stiffness method to determine all the reactions at supports. (b) Draw the quantitative free-body diagram of member. (c) Draw the quantitative bending moment diagrams and qualitative deflected shape. Take I = 200(106) mm4, A = 6(103) mm2, and E = 200 GPa for all members. Include axial deformation in the stiffness matrix. 40 kN 4m 4m 22.02 o 131
  • 132. 40 kN 4m 4m 22.02o 6 5 i 3´ Global 2* 1 2´ 3* 1* x´ 22.02 o j x* λjx = cos 22.02o = 0.9271, λjy = cos 67.98o = 0.3749 4 λix = cos 0o = 1, λiy = cos 90o = 0 40 kN 40 kN•m [FEF] 20 kN [ q´F ] i 6´ Local 5´ 1 1´ j 4´ 40 kN•m 20sin22.02=7.5 20cos22.02=18.54 20 kN 132
  • 133. • Transformation matrix 6 5 3´ Global 2* 1 4 λix = cos 0o = 1, λiy = cos 90o = 0 Member 1: [ q ] = [ q 4    q5  q 6    q 1*  q 2*    q 3*    3* 1* 2´ x´ x* λjx = cos 22.02o = 0.9271, λjy = cos 67.98o = 0.3749 T ]T[q´] = 4 5 6 1* 2* 3* 1´ 1 0  0  0 0  0  2´ 0 1 0 0 0 0 3´ 4´ 0 0 0 0 1 0 0 0 . 9271 0 0 . 3749 0 0 i 6´ Local 5´ 1 1´ [T ]T λix λ  iy 0 = 0 0  0  − λiy 0 0 0 1 0 0 0 0 λ jx 0 λ jy 0 0 λix 4´ j 0 0 0 0 0 0 − λ jy λ jx 0 0 0  0  0 0  1  5´ 6´ 0 0  q 1'    0 0  q 2'   0 0  q 3'    − 0 . 3749 0  q 4'  0 . 9271 0  q 5'    0 1  q 6'    133
  • 134. 3´ • Local stiffness matrix 2´ i δi Local 5´ 1 1´ ∆i j θi δj 4´ ∆j θj Ni  AE/ L 0 Vi  0 12 EI/ L3  Mi  0 6EI/ L2  Nj − AE/ L 0 Vj  0 − 12 EI/ L3  6EI/ L2 Mj  0  [k ]6×6 = [k´]1 6´ = 0 6EI/ L2 4 EI/ L 0 − 6EI/ L2 2EI/ L 1´ 2´ 1´ 150.0 0.000 2´ 0.000 0.9375 3´ 0.000 3.750 103 4´ -150.0 0.000 5´ 0.000 -0.9375 3´ 4´ 5´ 0.000 -150.0 0.000 3.750 0.000 -0.9375 20.00 0.000 -3.750 0.000 -3.750 150.0 0.000 0.000 0.9375 0.000 -3.750 3.750 10.00 0.000 -3.750 20.00 6´ 0.000 0 − AE/ L 0 − 12 EI/ L3 0 − 6EI/ L2 0 AE/ L 0 12 EI/ L3 0 − 6EI/ L2 0   6EI/ L2  2EI/ L   0  2 − 6EI/ L  4EI/ L   6´ 0.000 3.750 10.00 134
  • 135. 6 5 3´ Global 2* 1 3* 1* 4 Stiffness matrix [k´]: 1´ 2´ 1´ 150.0 0.000 2´ 0.000 0.9375 3´ 0.000 3.750 [k´]1 = 103 4´ -150.0 0.000 5´ 0.000 -0.9375 3.750 2´ x´ i 6´ Local 5´ 1 1´ j x* 3´ 4´ 5´ 0.000 0.000 -150.0 3.750 0.000 -0.9375 20.00 0.000 -3.750 6´ 0.000 3.750 10.00 0.000 -3.750 150.0 0.000 0.000 0.9375 0.000 -3.750 10.00 0.000 -3.750 20.00 4 5 4 5 150.0 0.000 0.000 0.9375 6 1* 0.000 -139.0 3.750 0.351 2* -56.25 -0.869 3* 0.000 3.750 6 0.000 20.00 1.406 -3.750 10.00 1* -139.0 0.351 1.406 2* -56.25 -0.869 -3.750 129.0 51.82 3* 0.000 1.406 4´ 6´ 0.000 Stiffness matrix [k*]: [ k* ] = [ T ]T[ k´ ][T] [k*]1 = 103 3.750 3.750 10.00 51.82 1.406 21.90 -3.476 -3.476 20.00 135
  • 136. 6 40 kN 5 2* 1 4 4m 4m 22.02 o 20 kN x´ x* 40 kN 40 kN•m Global Equilibrium: 3* 1* [ q´F ] 40 kN•m 20sin22.02=7.5 20cos22.02=18.54 20 kN [Q] = [K][D] + [QF] 1* Q1 = 0.0 Q3 = 0.0 D1* D3* = = 1* 103 3* 129 1.406 3* 1.406 D1* 20.0 D3* 36.37x10-6 -40 m 0.002 + -7.5 rad 136
  • 137. 6 40 kN 5 2* 1 4 4m 4m Member Force : 22.02 [q] = [k*][D] + [qF] o 40 kN•m q4 q5 4 5 q6 6 0.000 3.750 20.00 1.406 -3.750 10.00 q1* q2* q3* = x´ x* 40 kN•m 18.54 20 kN 4 5 6 1* 2* 3* 150.0 0.000 0.000 -139.0 -56.25 0.000 0.000 0.9375 3.750 0.351 -0.869 3.750 103 40 kN 3* 1* 7.5 0 0 0 20 -5.06 27.5 0 40.0 60 1* -139.0 0.351 1.406 129.0 51.82 1.406 36.4x10-6 0 2* -56.25 -0.869 -3.750 51.82 21.90 -3.476 2x10-3 * 0.000 3.750 10.00 1.406 -3.476 20.00 3 + -7.54 18.54 -40.0 = 0 13.48 0 40 kN 60 kN•m 5.06 kN 27.5 kN 13.48 kN 137
  • 138. 40 kN 40 kN 4m 4m 60.05 kN•m 22.02 o 5.05 kN 27.51 kN 13.47 kN 50.04 + -60.05 Bending moment diagram (kN•m) 0.002 rad Deflected shape 138
  • 139. Example 13 For the beam shown: (a) Use the stiffness method to determine all the reactions at supports. (b) Draw the quantitative free-body diagram of member. (c) Draw the quantitative bending moment diagrams and qualitative deflected shape. Take I = 200(106) mm4, A = 6(103) mm2, and E = 200 GPa for all members. Include axial deformation in the stiffness matrix. 40 kN 6 kN/m 2EI, 2AE 8m EI, AE 4m 22.02o 4m 139
  • 140. 40 kN 6 kN/m EI, AE 2EI, 2AE 8m 4m 6 22.02 o AE (0.006 m 2 )(200 ×106 kN / m 2 ) = L (8 m) 4m = 150 ×103 kN • m 3 5 2 8* 4 2 1 1 9* 7* Global 3´ 6´ 2´ 5´ 1´ 1 5´ 2´ Local = 20 ×103 kN • m 2 EI = 10 ×103 kN • m L 3´ 4´ 4 EI 4(200 ×106 kN / m 2 )(0.0002 m 4 ) = L (8 m) 1´ 2 6´ 6 EI 6(200 ×106 kN / m 2 )(0.0002 m 4 ) = 2 L (8 m) 2 4´ = 3.75 ×103 kN 12 EI 12(200 ×106 kN / m 2 )(0.0002 m 4 ) = L2 (8 m) 3 = 0.9375 ×103 kN / m 140
  • 141. 6 3 5 2 8* 1 1 4 2 9* 7* Global Local : Member 1 6 3 5 [ q] 4 3´ 2 2´ 1 1 [q] = [q´] Thus, [k] = [k´] 6´ [ q´] 1´ 1 4 5 4 5 6 1 2 0.000 150.0 0.000 0.000 -150.0 0.000 0.9375 3.750 0.000 -0.9375 6 0.000 4´ 3 0.000 3.750 20.00 0.000 -3.750 10.00 -150.0 0.000 0.000 2 0.000 -0.9375 -3.750 3 0.000 3.750 10.00 150.0 0.000 0.000 0.9375 0.000 -3.750 0.000 -3.750 20.00 [k]1 = [k´]1 = 2x103 1 3.750 5´ 141
  • 142. 6 3 5 [ 2 1 λix = cos 0o = 1, λiy = cos 90o = 0 9* 7* 2 3´ 8* q* ] 8* 1 1 4 3 2 2 9* 7* [ q´ ] 2´ x´ 1´ 5´ 6´ 4´ 2 x* λjx = cos 22.02o = 0.9271, λjy = cos 67.98o = 0.3749 Member 2: Use transformation matrix, [q*] = [T]T[q´] 1´ 2´ 3´ 4´ 5´ 6´ q1 q2 1 2 1 0 0 1 0 0 0 0 0 0 0 0 q1´ q2´ q3 3 0 0 1 0 0 0 q3´ 7* 8* 0 0 0 0 0 0 0 0 q4´ q5´ 9* 0 0 0 1 q6´ q7* q8* q9* = 0.9271 -0.3749 0.3749 0.9271 0 0 142
  • 143. 2 3 [ q* ] 1 3´ 8* 9* 7* 2 x´ [ q´ ] 2´ 1´ 2 4´ x* Stiffness matrix [k´]: 3´ 4´ 5´ 0.000 0.000 -150.0 3.750 0.000 -0.9375 20.00 0.000 -3.750 6´ 0.000 3.750 10.00 0.000 -3.750 150.0 0.000 0.000 0.9375 0.000 -3.750 10.00 0.000 -3.750 20.00 1 2 [k´]2 = 5´ 6´ 1´ 2´ 1´ 150.0 0.000 2´ 0.000 0.9375 3´ 0.000 3.750 103 4´ -150.0 0.000 5´ 0.000 -0.9375 3.750 1 2 150.0 0.000 0.000 0.9375 3 7* 0.000 -139.0 3.750 0.351 8* -56.25 -0.869 9* 0.000 3.750 3 0.000 20.00 1.406 -3.477 10.00 7* -139.0 0.351 1.406 8* -56.25 -0.869 -3.477 129.0 51.82 9* 0.000 1.406 6´ 0.000 Stiffness matrix [k*]: [k*] = [T]T[k´][T] [k*]2 = 103 3.750 3.750 10.00 51.82 1.406 21.90 -3.476 -3.476 20.00 143
  • 144. 6 3 5 2 4 8* 1 1 2 9* 7* 4 5 4 5 6 1 2 0.000 150.0 0.000 0.000 -150.0 0.000 0.9375 3.750 0.000 -0.9375 3 0.000 3.750 6 0.000 20.00 0.000 -3.750 10.00 -150.0 0.000 0.000 2 0.000 -0.9375 -3.750 3 0.000 3.750 10.00 150.0 0.000 0.000 0.9375 0.000 -3.750 0.000 -3.750 20.00 1 2 1 2 150.0 0.000 0.000 0.9375 3 7* 0.000 -139.0 3.750 0.351 8* -56.25 -0.869 9* 0.000 3.750 3 0.000 20.00 1.406 -3.477 10.00 7* -139.0 0.351 1.406 8* -56.25 -0.869 -3.477 9* 0.000 3.750 10.00 129.0 51.82 [k]1= 2x103 1 [k*]2 = 103 3.750 3.750 51.82 1.406 1.406 21.90 -3.476 -3.476 20.00 144
  • 145. 6 40 kN 6 kN/m 3 5 2 4 8* 2 1 1 40 kN 6 kN/m 32 kN•m 9* 40 kN•m 32 kN•m 40 kN•m 1 24 kN 24 kN Global: 1 1 3 = 103 7* 0 0 0 0 9* 18.54 20 kN 450 0 -139 0 7* 3 0 60 1.406 10 -139 1.406 129 1.406 D1 18.15x10-6 -509.84x10-6 rad 0 10 1.406 20 D1 D3 D7* D9* + 0 -32 + 40 = 8 -7.5 -40 m 0.00225 9* rad 58.73x10-6 7.5 m D3 7* D7* D9* = 145
  • 146. 6 3 5 2 4 32 kN•m q4 q5 4 5 4 5 6 1 2 0.000 150.0 0.000 0.000 -150.0 0.000 0.9375 3.750 0.000 -0.9375 q6 6 0.000 q1 q2 q3 = 2x103 20.00 0.000 -3.750 1 -150.0 0.000 0.000 2 0.000 -0.9375 -3.750 3 0.000 3.750 10.00 150.0 0.000 0.000 0.9375 0.000 -3.750 q4 q5 -5.45 20.18 kN kN q6 21.80 kN•m 5.45 27.82 kN kN -52.39 kN•m q1 q2 q3 = 24 kN 24 kN Member 1: [ q ] = [k ][d] + [qF] 3.750 32 kN•m 1 1 1 6 kN/m 21.80 kN•m 3 0.000 0 3.750 0 10.00 0 0 24 0.000 d1=18.15x10-6 -3.750 0 + 20.00 d3=-509.84 x10-6 6 kN/m 32 0 24 -32 52.39 kN•m 5.45 kN 5.45 kN 20.18 kN 27.82 kN 146
  • 147. 2 3 1 40 kN 8* 9* 7* 2 40 kN•m x´ 20 kN Member 2: [ q ] = [k ][d] + [qF] 1 2 3 7* q1 1 150.0 0.000 0.000 -139.0 q2 2 0.000 0.9375 3.750 0.351 q3 3 0.000 3.750 20.00 1.406 q7* = 103 7* -139.0 0.351 1.406 129.0 q8* 8* -56.25 -0.869 -3.750 51.82 q9* 9* 0.000 3.750 10.00 1.406 -5.45 26.55 kN kN q3 52.39 kN kN 0 kN•m 8* -56.25 -0.869 9* 0.000 3.750 18.15x10-6 0 0 20 -3.750 10.00 -509.84x10-6 40 1.406 21.90 -3.476 51.82 -3.476 20.00 58.73x10-6 0 + 0.00225 -7.5 18.54 -40 kN•m 0 14.51 20sin22.02=7.5 20cos22.02=18.54 20 kN 2 x* q1 q2 [ 40 kN•m q´F ] q7* q8* q9* = 40 kN 52.39 kN•m 5.45 kN 26.55 kN 14.51 kN 147
  • 148. 6 kN/m 21.80 kN•m 52.39 kN•m 52.39 kN•m 40 kN 5.45 kN 5.45 kN 5.45 kN 26.55 kN 27.82 kN 20.18 kN 40 kN 6 kN/m 21.80 kN•m 14.51 kN 14.51cos 22.02o =13.45 kN 5.45 kN 20.18 kN V (kN) 54.37 kN 4m 8m 26.55 20.18 + 3.36 m 4 m 14.51 kN 22.02o + - - x (m) -13.45 -27.82 53.81 12.14 M (kN•m) -21.8 + -52.39 x (m) 148

×