0
Leyes de la  Dinámica  TEMAS 10 Y 11
<ul><li>DINÁMICA </li></ul><ul><li>Primera ley de Newton.  </li></ul><ul><li>Fuerza. Masa. Segunda ley de Newton. Unidades...
Mecánica de los cuerpos macroscópicos Movimiento mecánico Cinemática  Dinámica Dinámica Investiga las causas que provocan ...
Problema Central de la Mecánica Clásica 1- Se tiene un  sistema físico  a estudiar, del cual conocemos sus propiedades (ma...
Masa M Carga Q Volumen V etc. ? entorno Leyes de Fuerzas:  a partir de las propiedades del sistema y de su entorno S
El problema de la Mecánica Clásica Fue resuelto por  Isaac Newton  (1642-1727) bajo la óptica de la  relatividad de Galile...
Primera ley de Newton Suele llamarse  ley de la inercia .  Inercia  es la tendencia de los cuerpos a permanecer en reposo ...
Un cuerpo libre de la acción de otros cuerpos permanece en  reposo o en movimiento rectilíneo uniforme Presupone la existe...
Teoría Especial de la Relatividad  Teoría de la Relatividad de Galileo Válida la primera ley de Newton o Principio de la I...
Masa <ul><li>Es la magnitud física que permite  cuantificar la inercia </li></ul><ul><li>La masa de un cuerpo  es una medi...
Cantidad de Movimiento lineal de una partícula Se define como el producto de la masa por la velocidad de la partícula.  Ti...
Valor Metodológico Dejando invariante la forma de las leyes físicas Teoría de la Relatividad leyes físicas Realidad reflej...
Si se cumple  la ley de conservación de la cantidad de movimiento lineal  para un SRI, entonces  se incumple  para otro SR...
FUERZA de interacción Es la  magnitud física  que permite cuantificar la  acción del entorno material  sobre el sistema ba...
Segunda ley de Newton La  fuerza resultante  que actúa sobre el  cuerpo  es igual al producto de la masa del cuerpo por  l...
Entorno: Sistema: Cuerpo 1 Tierra , Hilo tensionado , Mesa
Segunda ley de Newton F 3 F 4 F 1 F 2 F R  = F 1  + F 2  + F 3  + F 4   La  aceleración del   cuerpo  es  directamente pro...
Segunda ley de Newton Si la  fuerza resultante  que actúa sobre la partícula se  anula , entonces el cuerpo se mueve con  ...
Teoría de la Relatividad de Galileo Válida la segunda ley de Newton Teoría Especial de la Relatividad  Teoría de la Relati...
¡¡ Dificultad !! Teoría Especial de la Relatividad  Teoría de la Relatividad de Galileo Válida la segunda ley de Newton Aú...
Válida la segunda ley de Newton FUERZA Si en un SRI una partícula cambia su cantidad de movimiento lineal, entonces existe...
Tercera ley de Newton Las fuerzas  con que dos cuerpos actúan  uno sobre otro , son siempre de  igual módulo , están en la...
<ul><li>Ejemplos </li></ul><ul><li>Si sobre un cuerpo de 10 kg de masa actúan las fuerzas:  F 1 = 100  i  + 30 j ,  F 2 = ...
4. En el sistema mostrado determinese la tensión de los cables si el sistema se encuentra en equilibrio m 53 37 m = 10kg
<ul><li>6. El bloque resbala sin fricción con velocidad constante v = 2,5 m/s sobre el plano inclinado. La polea es ideal....
Profundización y repaso de las Leyes  de la  Dinámica
   Cuerpos elásticos son aquellos que al cesar la fuerza, recuperan su forma inicial    Cuerpos plásticos son aquellos q...
Por su forma de actuar las fuerzas se clasifican en: - FUERZAS DE CONTACTO : son aquellas que se ejercen sólo cuando el cu...
La fuerza es una magnitud vectorial Composición de fuerzas    Las fuerzas son magnitudes físicas con carácter vectorial. ...
Coordenadas cartesianas: componentes de una fuerza    Se puede expresar de 3 formas:    A partir de consideraciones geom...
Gráficas del movimiento y fuerzas    En general, conociendo sólo la fuerza resultante sobre un objeto, no podemos asegura...
Toda la mecánica clásica se basa en las tres leyes de Newton . Sin embargo estas leyes  sólo son válidas para cuerpos que ...
La bola está en reposo La acción de la fuerza produce un movimiento El efecto es un movimiento rectilíneo casi uniforme Lo...
   Un choque frontal entre un coche circulando a 30 km/h y un árbol, provoca al conductor una fuerza de inercia de 5000 N...
Las fuerzas de acción y reacción no se anulan Las fuerzas nunca actúan solas    Las fuerzas que actúan sobre un cuerpo si...
Lo que se llama fuerza normal es la reacción de una superficie al apoyo de un cuerpo o a cualquier otra fuerza que presion...
EQUILIBRIO DE FUERZAS Condición de equilibrio : La suma de todas las fuerzas que actúan sobre un cuerpo debe ser nula.  -C...
El cuerpo adquiere un MRUA de aceleración Y X    f  = N    P = 0     N = m g iy F N P  = m  g ix x    f  = F = m a F :...
La fuerza inicial impulsora no se contabiliza   Y X N P x P  = m g  P y  v    0 0    f  =  m a          P  =  m a i...
Luego la aceleración del cuerpo será :  f iy  = m a y      N    P y  = 0     N = P y     f  = m a        N    P  ...
FUERZA DE ROZAMIENTO Cuando un cuerpo se mueve roza con la superficie sobre la que se produce el movimiento y esto crea un...
El coeficiente de rozamiento estático, varía entre  0      s       s, max   Una fuerza aplicada F      s, max  N , p...
El coeficiente de rozamiento estático es siempre mayor que el dinámico porque un cuerpo en movimiento roza menos con la su...
Y X P x  P y P  = m  g  v N fr y N    P  =  0  N =  P  =  m g cos   y f r =  µ N  m g sen    -  f  r =  m a   m g s...
La fuerza centrípeta sale simplemente de aplicar la segunda ley de Newton a un cuerpo que gira, F=m.a siendo la aceleració...
CUERPOS ENLAZADOS Cuando varios cuerpos se unen mediante cuerdas, la fuerza que se aplica sobre uno de ellos se va transmi...
Upcoming SlideShare
Loading in...5
×

Presentaciónfinal

5,765

Published on

Published in: Education
1 Comment
3 Likes
Statistics
Notes
  • quisiera que me digan en que periodo escolar se ve esto ??
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
5,765
On Slideshare
0
From Embeds
0
Number of Embeds
4
Actions
Shares
0
Downloads
157
Comments
1
Likes
3
Embeds 0
No embeds

No notes for slide

Transcript of "Presentaciónfinal"

  1. 1. Leyes de la Dinámica TEMAS 10 Y 11
  2. 2. <ul><li>DINÁMICA </li></ul><ul><li>Primera ley de Newton. </li></ul><ul><li>Fuerza. Masa. Segunda ley de Newton. Unidades de fuerza. </li></ul><ul><li>Cantidad de movimiento lineal. Generalización de la segunda ley de Newton. </li></ul><ul><li>Tercera ley de Newton. </li></ul><ul><li>Profundización en la leyes de la Dinámica </li></ul>
  3. 3. Mecánica de los cuerpos macroscópicos Movimiento mecánico Cinemática Dinámica Dinámica Investiga las causas que provocan el movimiento mecánico.
  4. 4. Problema Central de la Mecánica Clásica 1- Se tiene un sistema físico a estudiar, del cual conocemos sus propiedades (masa, volumen, carga eléctrica, etc.) 2- El sistema se halla inicialmente en una posición conocida (ya se ha definido el SRI con observador) , con una velocidad conocida , en un entorno con el cual entra en interacción . 3- ¿Cómo será el movimiento del sistema en instantes posteriores? Dinámica Cinemática
  5. 5. Masa M Carga Q Volumen V etc. ? entorno Leyes de Fuerzas: a partir de las propiedades del sistema y de su entorno S
  6. 6. El problema de la Mecánica Clásica Fue resuelto por Isaac Newton (1642-1727) bajo la óptica de la relatividad de Galileo , cuando promulgó sus leyes del movimiento y formuló la ley de la gravitación universal
  7. 7. Primera ley de Newton Suele llamarse ley de la inercia . Inercia es la tendencia de los cuerpos a permanecer en reposo o en movimiento rectilíneo y uniforme. Un cuerpo libre de la acción de otros cuerpos permanece en reposo o en movimiento rectilíneo uniforme Inercia es la oposición que presentan los cuerpos al cambio de su estado de movimiento .
  8. 8. Un cuerpo libre de la acción de otros cuerpos permanece en reposo o en movimiento rectilíneo uniforme Presupone la existencia de los SRI
  9. 9. Teoría Especial de la Relatividad Teoría de la Relatividad de Galileo Válida la primera ley de Newton o Principio de la Inercia SRI
  10. 10. Masa <ul><li>Es la magnitud física que permite cuantificar la inercia </li></ul><ul><li>La masa de un cuerpo es una medida de su inercia </li></ul><ul><li>La masa es una medida de la oposición de un cuerpo a cambiar su estado de movimiento </li></ul>[kg] Es un escalar positivo o nulo m  0
  11. 11. Cantidad de Movimiento lineal de una partícula Se define como el producto de la masa por la velocidad de la partícula. Tiene carácter vectorial, y como m es un escalar, entonces p V [kg m/s]
  12. 12. Valor Metodológico Dejando invariante la forma de las leyes físicas Teoría de la Relatividad leyes físicas Realidad reflejada por un observador en un SRI S Realidad reflejada por un observador en otro SRI S´
  13. 13. Si se cumple la ley de conservación de la cantidad de movimiento lineal para un SRI, entonces se incumple para otro SRI´ que se mueva respecto al primero a v grandes ¡¡ Dificultad !! Mec. de Newton Teoría Especial de la Relatividad Teoría de la Relatividad de Galileo La masa es un invariante relativista p V/c 1 Al considerar la cantidad de movimiento lineal como el producto de la masa (relativista) por la velocidad , entonces, si p del sistema se conserva en un SRI, también se conservará en cualquier otro SRI, independientemente de la velocidad del observador.
  14. 14. FUERZA de interacción Es la magnitud física que permite cuantificar la acción del entorno material sobre el sistema bajo estudio. Esta acción depende de las propiedades del sistema y del entorno y en algunos casos del estado de l movimiento del sistema. [N] Tiene carácter vectorial F
  15. 15. Segunda ley de Newton La fuerza resultante que actúa sobre el cuerpo es igual al producto de la masa del cuerpo por la aceleración que adquiere. [N=kg m/s 2 ] entorno cuerpo F R = m a
  16. 16. Entorno: Sistema: Cuerpo 1 Tierra , Hilo tensionado , Mesa
  17. 17. Segunda ley de Newton F 3 F 4 F 1 F 2 F R = F 1 + F 2 + F 3 + F 4 La aceleración del cuerpo es directamente proporcional a la fuerza resultante que actúa sobre él e inversamente proporcional a su masa .
  18. 18. Segunda ley de Newton Si la fuerza resultante que actúa sobre la partícula se anula , entonces el cuerpo se mueve con MRU y se dice que está en equilibrio (traslacional)
  19. 19. Teoría de la Relatividad de Galileo Válida la segunda ley de Newton Teoría Especial de la Relatividad Teoría de la Relatividad de Galileo
  20. 20. ¡¡ Dificultad !! Teoría Especial de la Relatividad Teoría de la Relatividad de Galileo Válida la segunda ley de Newton Aún tomando a m como la masa relativista, la expresión F = ma cambia de forma al llevarla de un sistema de SRI a otro, incluso a través de las transformaciones de Lorentz
  21. 21. Válida la segunda ley de Newton FUERZA Si en un SRI una partícula cambia su cantidad de movimiento lineal, entonces existe una causa que provoca este cambio: la acción de una fuerza sobre dicha partícula, la cual es igual al cambio de la cantidad de movimiento en el tiempo. Esta expresión es válida para cualquier SRI, independientemente de la velocidad del observador. [N] Teoría Especial de la Relatividad Teoría de la Relatividad de Galileo
  22. 22. Tercera ley de Newton Las fuerzas con que dos cuerpos actúan uno sobre otro , son siempre de igual módulo , están en la misma dirección y en sentido contrario . Esta ley sugiere que las fuerzas de interacción surgen siempre por pares. Están aplicadas en cuerpos diferentes 1 2 Agente externo F 12 = - F 21
  23. 23. <ul><li>Ejemplos </li></ul><ul><li>Si sobre un cuerpo de 10 kg de masa actúan las fuerzas: F 1 = 100 i + 30 j , F 2 = -30 i – 40 j y F 3 = - 110 i - 20 j , determine la aceleración que adquiere m. </li></ul><ul><li>2. Las coordenadas de posición de una partícula de 5 kg están dadas según: </li></ul><ul><li>x(t) = 2t 2 – t + 5 y y(t) = t 3 –2t 2 –t +2. </li></ul><ul><li>Determine a) la fuerza que actúa sobre ella en el instante t = 2s, b) su a t y a N en t = 2s, c) el ángulo que forma la velocidad con la aceleración en el instante t = 2s. </li></ul>
  24. 24. 4. En el sistema mostrado determinese la tensión de los cables si el sistema se encuentra en equilibrio m 53 37 m = 10kg
  25. 25. <ul><li>6. El bloque resbala sin fricción con velocidad constante v = 2,5 m/s sobre el plano inclinado. La polea es ideal. Determine: </li></ul><ul><li>el DCL de m </li></ul><ul><li>La tensión del cable </li></ul><ul><li>Si a mitad de camino se rompe el cable, halle la aceleración con la cual cae el bloque. </li></ul>37 o
  26. 26. Profundización y repaso de las Leyes de la Dinámica
  27. 27.  Cuerpos elásticos son aquellos que al cesar la fuerza, recuperan su forma inicial  Cuerpos plásticos son aquellos que al cesar la fuerza no la recuperan, sino que mantienen su última forma.  Al aplicar sucesivas fuerzas sobre un muelle de 20 cm de longitud, se obtienen los correspondientes alargamientos que recogemos en la tabla: La DINÁMICA es la parte de la mecánica que estudia las causas que originan el movimiento de los cuerpos, estas causas que producen movimiento son las FUERZAS . FUERZA es toda causa capaz de alterar el estado de reposo o de movimiento de los cuerpos o producir deformación. Se miden en NEWTONS ( N ). Es una magnitud vectorial Esta es la base del DINAMÓMETRO que sirve para medir fuerzas y es un muelle con una escala graduda que se va estirando según la fuerza que se ejerce F (N)   0  (m) 0,5 0,1 1 0,2 1,5 0,3
  28. 28. Por su forma de actuar las fuerzas se clasifican en: - FUERZAS DE CONTACTO : son aquellas que se ejercen sólo cuando el cuerpo que ejecuta la fuerza está en contacto con el que la recibe. Por ejemplo cuando empujamos un objeto o la fuerza de rozamiento. - FUERZAS DE ACCIÓN A DISTANCIA : actúan sin estar en contacto con el cuerpo que las recibe. Por ejemplo la fuerza de atracción gravitatoria que origina el peso de los cuerpos y las atracciones y repulsiones entre cargas eléctricas y magnéticas. Según el intervalo de tiempo en que actúan las fuerzas se clasifican en: INSTANTÁNEAS: si actúan en un intervalo de tiempo tan corto que resultan muy difíciles de medir, son fuerzas que inician movimientos pero enseguida dejan de actuar, es el caso de cuando lanzamos un cuerpo. No se tienen en cuenta al considerar las fuerzas que actúan sobre el cuerpo durante su movimiento ya que no actúan durante el mismo sino solamente al inicio. CONTÍNUAS: actúan durante el movimiento del cuerpo, producen movimientos acelerados si van a favor del movimiento del cuerpo y decelerados si van en contra. La dinámica se fundamenta en tres principios que formulados básicamente por Galileo fueron completados y corregidos por Newton (1642-1727) en su célebre libro Philosophiae Naturalis Principia Mathematica, probablemente el libro más famoso de la historia de la física. Estos tres Principios de la dinámica no se demuestran, se admiten como verdaderos porque las consecuencias que de ellos se derivan están de acuerdo con los hechos observados en la naturaleza.
  29. 29. La fuerza es una magnitud vectorial Composición de fuerzas  Las fuerzas son magnitudes físicas con carácter vectorial. Sus efectos dependen de su intensidad, dirección, sentido y punto de aplicación. Sentido Punto de aplicación Dirección    Intensidad En general:
  30. 30. Coordenadas cartesianas: componentes de una fuerza  Se puede expresar de 3 formas:  A partir de consideraciones geométricas :  La suma de dos fuerzas: F x = F cos  F y = F sen  X Y  Se puede escribir el vector como suma de otros dos dirigidos según los ejes X e Y  El módulo de un vector : | | F = =   i  j
  31. 31. Gráficas del movimiento y fuerzas  En general, conociendo sólo la fuerza resultante sobre un objeto, no podemos asegurar hacia dónde se moverá, sin embargo, de las gráficas del movimiento sí que puede obtener información sobre si actúan o no fuerzas. Fuerza que actúa en varias etapas diferentes: v (m/s) t (s) 0 4 9 11 4  Entre t = 4 y t = 9 s  se mantiene su velocidad   Entre t = 9 y t = 11 s  otra fuerza consigue parar el cuerpo  De 0 a 4 s  actúa = cte  pasa de v = 0 a v = 4 m/s Peso: fuerza con que la Tierra atrae a los objetos en el interios de ella, es siempre vertical y hacia abajo
  32. 32. Toda la mecánica clásica se basa en las tres leyes de Newton . Sin embargo estas leyes sólo son válidas para cuerpos que se mueven a velocidades inferiores a la luz y vistos desde sistemas de referencia inerciales (es decir desde sistemas de referencia en reposo o con movimiento uniforme). Si realizamos las medidas desde un sistema de referencia que posee aceleración, las leyes de Newton aparentemente no se cumplen pero esto se corrige fácilmente y se puede evitar cambiando de sistema de referencia. PRIMER PRINCIPIO O PRINCIPIO DE INERCIA: si sobre un cuerpo no actúa ninguna fuerza o la resultante de las fuerzas que actúan es cero, el cuerpo permanece indefinidamente en su estado de reposo, si estaba en reposo o de movimiento rectilíneo y uniforme si se estaba moviendo Si no hay fuerzas no hay aceleración por lo que la velocidad que lleva el cuerpo se mantiene constante. La primera parte del principio resulta evidente, si el cuerpo está parado y no actúan fuerzas sigue parado, la segunda parte es más difícil de comprobar porque sabemos que si lanzamos un cuerpo sobre una superficie acaba por pararse, pero si no existiera rozamiento el cuerpo no estaría sometido a ninguna fuerza y se movería indefinidamente con movimiento uniforme. Si todas las fuerzas que actúan sobre un cuerpo en movimiento se igualan entre si y se anulan el cuerpo queda con movimiento uniforme, con velocidad constante, la que tenía en el momento que se igualaron.
  33. 33. La bola está en reposo La acción de la fuerza produce un movimiento El efecto es un movimiento rectilíneo casi uniforme Los frenazos bruscos ponen de manifiesto las fuerzas de inercia La nave espacial se mueve en el espacio exterior debido a su inercia Este Principio se llama Principio de Inercia porque indica la resistencia de un cuerpo a ponerse en movimiento a partir del reposo o a cambiar su velocidad. SE LLAMA INERCIA A LA TENDENCIA QUE TIENEN LOS CUERPOS A CONSERVAR SU ESTADO DE MOVIMIENTO O REPOSO. EQUILIBRIO: se dice que un cuerpo está en equilibrio cuando su aceleración con respecto al sistema de referencia es nula, esto sucede cuando la resultante de las fuerzas que actúan es cero. REPOSO: se dice que un cuerpo está en reposo cuando su velocidad respecto al sistema de referencia es nula, no se mueve.
  34. 34.  Un choque frontal entre un coche circulando a 30 km/h y un árbol, provoca al conductor una fuerza de inercia de 5000 N contra el volante. Sus brazos no lo soportan.  La constante de proporcionalidad entre la fuerza que actúa y las aceleraciones que origina es la masa que mide la resistencia que cada cuerpo opone al movimiento . a mayor masa menor aceleración si la fuerza es la misma, cuanto mayor es la masa de un cuerpo más cuesta moverlo  Aunque se apliquen varias fuerzas sobre un cuerpo, la aceleración producida es única Un cuerpo sometido a la acción de una fuerza constante adquiere un movimiento uniformemente acelerado cuya aceleración es constante en módulo y tiene la misma dirección y sentido que la fuerza aplicada. SEGUNDO PRINCIPIO O LEY FUNDAMENTAL DE LA DINÁMICA DE TRASLACIÓN cuando un cuerpo se somete sucesivamente a varias fuerzas adquiere aceleraciones proporcionales a dichas fuerzas de su misma dirección y sentido la fuerza que aparece en la ecuación es la resultante de las fuerzas que actúan en el movimiento
  35. 35. Las fuerzas de acción y reacción no se anulan Las fuerzas nunca actúan solas  Las fuerzas que actúan sobre un cuerpo siempre son debidas a la presencia de otros cuerpos más o menos próximos  Las fuerzas se ejercen sobre cuerpos diferentes, por eso no se anulan Unidades de fuerza : en el Sistema Internacional de unidades es NEWTON (N) N =Kg .m /s 2 En el Sistema Técnico la unidad es el KILOPONDIO (Kp) es la fuerza con que la Tierra atrae a una masa de 1 Kg (es decir el peso correspondiente a una masa de 1 Kg) P= m. g = 1. 9,8= 9,8 N luego 1Kp=9,8N TERCER PRINCIPIO O LEY DE ACCIÓN Y REACCIÓN : cuando un cuerpo ejerce sobre otro una fuerza (acción) el segundo ejerce sobre el primero otra fuerza igual y en sentido contrario (reacción) A B
  36. 36. Lo que se llama fuerza normal es la reacción de una superficie al apoyo de un cuerpo o a cualquier otra fuerza que presione contra ella. Para que exista normal debe haber alguna fuerza presionando la superficie, de lo contrario no hay reacción. Por la ley de acción y reacción la normal es igual a la fuerza de apoyo. Las fuerzas de acción y reacción se aplican sobre cuerpos distintos y las ejercen cuerpos distintos entre sí, no sólo no impiden el movimiento sino que gracias a ellas el movimiento es posible. reacción acción acción peso ( ) reacción fuerza normal ( )
  37. 37. EQUILIBRIO DE FUERZAS Condición de equilibrio : La suma de todas las fuerzas que actúan sobre un cuerpo debe ser nula. -Condición de equilibrio entre dos fuerzas :que se apliquen sobre un mismo cuerpo, en la misma dirección y en sentidos contrarios y sean iguales. -Condición de equilibrio para tres fuerzas: que se apliquen sobre un mismo cuerpo y una sea igual, de la misma dirección y sentido contrario a la resultante de las otras dos.   p  = 0 
  38. 38. El cuerpo adquiere un MRUA de aceleración Y X  f = N  P = 0  N = m g iy F N P = m g ix x  f = F = m a F : fuerza aplicada Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  v Y X F N P = m g F x F y v  F : fuerza aplicada F x = F cos  F y = F sen   f = m a   F = m a ix x x x  f = m a   N + F  P = m a iy y y y Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y 
  39. 39. La fuerza inicial impulsora no se contabiliza Y X N P x P = m g  P y  v  0 0  f = m a    P = m a ix x x x   mg sen  = m a x  a =  g sen  x  f = m a   N  P = 0 iy y y P x = mg sen  P y = mg cos  Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  N = P y Y X N P x  P y P = m g  v o = 0 P x = mg sen  P y = mg cos   f = m a   P = m a ix x x x mg sen  = m a x a = g sen  x  f = m a   N - P = 0 iy y y v Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  N = P y
  40. 40. Luego la aceleración del cuerpo será :  f iy = m a y  N  P y = 0  N = P y   f = m a   N  P = 0 iy y y N = P y Y X N P x  P y P = m g  v F Para que el cuerpo suba, F  P x P x = mg sen  P y = mg cos  ix x x x mg sen  = m a x F   f = m a   F  P = m a F : fuerza aplicada Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  Y X N  P y P = m g  v F P x = mg sen  P y = mg cos   F  mg sen  = m a x  f ix = m a x   F  P x = m a x F : fuerza aplicada Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  P x
  41. 41. FUERZA DE ROZAMIENTO Cuando un cuerpo se mueve roza con la superficie sobre la que se produce el movimiento y esto crea una fuerza que se opone siempre al movimiento del cuerpo, paralela a la superficie sobre la que se mueve y que recibe el nombre de fuerza de rozamiento 1- No depende de la cantidad de superficie de contacto. Si la rugosidad de la superficie y el tipo de material es el mismo en todas las caras del cuerpo se comprueba experimentalmente que la fuerza de rozamiento es la misma para todas las caras.F R1 =F R2 2- Depende de la naturaleza de las superficies en contacto . Se origina por contacto de unas superficies con otras, por adherencias entre diversos materiales y por la rugosidad de las superficies, a más rugosidad más rozamiento. Existen Tablas donde a cada material se le asigna un valor característico obtenido gracias a diversas medidas experimentales según el mayor o menor rozamiento observado al deslizar un objeto sobre ellos, este valor constante y característico de cada material se llama coeficiente de rozamiento  . 3- Depende también de la fuerza normal, es decir de la resultante de las fuerzas perpendiculares a la superficie sobre la que se mueve el cuerpo. Cuanto mayor es la fuerza de apoyo del cuerpo sobre la superficie de movimiento mayor es el rozamiento con la misma, en cambio las fuerzas que tienden a levantar al cuerpo disminuyen su apoyo y por tanto su rozamiento.
  42. 42. El coeficiente de rozamiento estático, varía entre 0   s   s, max Una fuerza aplicada F   s, max N , pone el cuerpo en movimiento Y X Y X Y X N P = m g N N P = m g P = m g F  F  f r  f r  F r  =  s N = 0   s = 0 Sin fuerza aplicada, no hay fuerza de rozamiento f r  =  s  N = F  La fuerza de rozamiento equilibra a la fuerza aplicada f r  =  s,max N = F  Fuerza aplicada máxima sin que el cuerpo se mueva
  43. 43. El coeficiente de rozamiento estático es siempre mayor que el dinámico porque un cuerpo en movimiento roza menos con la superficie sobre la que se mueve que si está en reposo. m g N F f r fr = µ d N µ  µ d s, max F  f r a F : fuerza aplicada Fuerza de rozamiento dinámico  Coeficiente de rozamiento dinámico  X Y v F N  P = 0  N = P = m g F  f = m a r f = µ N r  F  µ N = m a x P = m g N f r F : fuerza aplicada Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y 
  44. 44. Y X P x  P y P = m g  v N fr y N  P = 0  N = P = m g cos  y f r = µ N  m g sen  - f r = m a m g sen  - µ N = m a µ a = g sen  - g cos  Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y  Y X N  P y P = m g  v f r y N  P = 0  N = P = m g cos  y m a = ( F  mg sen   µ mg cos  ) 1 r f = µm g cos  F  ( P + f ) = m a x r x F  P  µm g cos  = m a x P x F F : fuerza aplicada Fuerzas en la dirección del eje X  Fuerzas en la dirección del eje Y 
  45. 45. La fuerza centrípeta sale simplemente de aplicar la segunda ley de Newton a un cuerpo que gira, F=m.a siendo la aceleración, puesto que hay cambio de dirección de la velocidad, aceleración normal o centrípeta.
  46. 46. CUERPOS ENLAZADOS Cuando varios cuerpos se unen mediante cuerdas, la fuerza que se aplica sobre uno de ellos se va transmitiendo a los otros tensando la cuerda que los une. La fuerza que ejerce una cuerda tensa al tirar de un cuerpo unido a ella se llama TENSIÓN y se dibuja siempre partiendo del cuerpo que en ese momento se estudia y sobre la cuerda. Para aplicar las leyes de Newton a sistemas con varios cuerpos enlazados conviene seguir ordenadamente una serie de pasos: 1-Elegir un sentido lógico del movimiento. Si al final la aceleración obtenida es negativa significará que el sentido del movimiento es justo el contrario y se empezará de nuevo con el sentido correcto. 2-Dibujar todas las fuerzas que actúan descomponiendo aquellas que no sean ni paralelas ni perpendiculares al desplazamiento del cuerpo (los ejes se toman según la superficie de movimiento de cada cuerpo).Si hay alguna polea considerarla solamente como parte del dibujo pero despreciable a la hora de hacer los cálculos, por lo que la tensión a un lado y a otro de una polea es la misma ya que se trata de la misma cuerda, esto supone cometer algo de error, pero los resultados se aproximan bastante a los reales y en poleas pequeñas coinciden perfectamente. 3-Sólo actúan directamente en el movimiento de cada cuerpo aquellas fuerzas o componentes de fuerzas cuya dirección coincide con la del movimiento del cuerpo. Consideramos positivas las fuerzas que van a favor del movimiento y negativas las que van en contra. 4-Si hay varios cuerpos unidos se plantea la ecuación fundamental de la dinámica (2º ley de Newton) a cada cuerpo por separado con lo que se obtendrán tantas ecuaciones como cuerpos haya unidos, incluyendo en la ecuación de cada cuerpo solamente las fuerzas aplicadas directamente sobre él y que coinciden con la dirección en que se mueve dicho cuerpo. 5-Lo que resulta de todo ello es un sistema de ecuaciones de fácil resolución si se suman todas las ecuaciones obtenidas.
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×