Cu stp 10_clfr

  • 517 views
Uploaded on

 

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
517
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
37
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. SOLAR THERMAL POWER! GEEN 4830 – ECEN 5007!10. Concentrating Linear Fresnel Reflectors! Manuel A. Silva Pérez ! silva@esi.us.es !
  • 2. Fresnel reflectors}  Geometrically, ideal reflectors for solar energy collection are continuous reflectors (PD, PT)}  Large continuous reflectors (or lenses) can be approximated by smaller elements distributed over a plane (CRS, LFR)}  The design enables the construction of lenses of large aperture and short focal length without the weight and volume of material that would be required in conventional lens design. 1 GEEN 4830 – ECEN 5007 14/07/11
  • 3. The278] Ref. p. Fresnel reflector principle 4 Solar power 251 z Focal point y1 y2 P0 P1 Fig. 4.1.10. Fresnel geometry using P2 three confocal parabolas P0, P1 and P2. H x The height of the Fresnel optics is H. The curvature of the elements is de- creasing with the distance from the Paraboloid slices central line.}  Source: Neumann, A.:  4.1 Solar thermal power plants. Heinloth, K. (ed.). SpringerMaterials - The Landolt- Börnstein Database (http://www.springermaterials.com). DOI: 10.1007/10858992_10 4.1.2.6 Fresnel geometry Building a large single piece paraboloid is expensive, so other designs would be preferable for the pur- 2 GEEN 4830 – ECEN 5007 14/07/11 pose of energy collection. An alternative is the Fresnel reflector which is composed of parabola slices mounted on a flat surface. The flat mounting surface has advantages with regard to practical engineering
  • 4. First LFR prototypes}  1964 Giovanni Francia (IT)}  1970’s FMC}  1993 University of Sydney}  1998 Solarmundo (BE) 3 GEEN 4830 – ECEN 5007 14/07/11
  • 5. Concept}  Line focus concentrating system}  Array of nearly-flat reflectors (mirrors) that concentrate sunlight onto elevated linear receivers Sun rays 2nd stage concentrator Primary fresnel reflectors Absorber tube 4 GEEN 4830 – ECEN 5007 14/07/11
  • 6. Advantages}  Low cost for structural support and reflectors}  Fixed fluid joints}  Receiver separated from reflector}  Long focal length (allows for nearly flat mirrors)Ø  LOW COST ALTERNATIVE TO PARABOLIC TROUGHS Disadvantages •  Low concentration -> limited maximum temperature Ø LOW EFFICIENCY 5 GEEN 4830 – ECEN 5007 14/07/11
  • 7. Nova 1 LFR Module (source: Novatec) Fresnel collector n  Base module of 513 m2# •  128 Primary Reflector Units track sun using 2 x 40 Watt motors 9 •  Land use factor = 50% •  Thermal Power Capacity = 306 kW4 •  Solar-to-Thermal Conversion Factor: 68% (?) n  Direct steam production n  Saturated steam at 270°C, 55bar n  (next product generation for superheated steam at 350° in 2011) 6 GEEN 4830 – ECEN 5007 14/07/11
  • 8. Compact linear fresnel reflectors}  Efficient land use by using 2 parallel receivers 7 GEEN 4830 – ECEN 5007 14/07/11
  • 9. AUSRA CLFR module %&()*+ ,-*( ./+*% 735. H45-IJ34 K98?D A5.34L -, ,?9 ,4 M,9.3- I59. N.35M O3-345.,4 H8P?-6 Q54P,- I.339 >?>3B /,4?R,-.59 M,8-. I,9?D >?>?-6B-, M,2?-6 E,?-.I S3J93Q.,4I N.339 P5QT3D 695II M?44,4I 4,.5.3 D,@-@54D J,4 >4,.3Q.?,- H45QT?-6 18.,M5.?Q Q,M>8.34 Q,-.4,9 S3Q3?234 73?6/. )$ J33. W#! M3.34IX N.339 P5QT3D M?44,4I .45QT ./3 I8-B /35.?-6 @5.34 ., Q435.3 439?5P93B 9,@ Q,I. I.35MV K,4 +,43 G-J,4M5.?,-U (#0$12 /345 &,( 6 )($V%V"&$$ + I593IY58I45VQ,M /..>UZZ@@@V58I45VQ,MZ.3Q/-,9,6:Z . )($V"V&!"& 7 @@@V58I45VQ,M18I45 5-D ./3 18I45 I8- 9,6, 543 .45D3M54TI ,J 18I45B G-QV [ 18I45B G-QV %$$"V 199 4?6/.I 43I3423DV # $*&#$" 8 GEEN 4830 – ECEN 5007 14/07/11
  • 10. Applications}  Stand-alone}  Solar booster}  Thermal energy generation}  Solar cooling 9 GEEN 4830 – ECEN 5007 14/07/11
  • 11. Basic configuration of a DSG CLFR power plant Solar field To Grid Steam Electric Sun Steam Turbine Generator Steam Steam Dryer Cooling Water Hotwell Condenser High Pressure CoolingCycle Supply Tower Pump Water 10 GEEN 4830 – ECEN 5007 14/07/11
  • 12. Prototype CLFR mirrors (AUSRA / SHP)11 GEEN 4830 – ECEN 5007 14/07/11
  • 13. Liddell CLFR 36.5MW Pilot Project Pre Phase 1: 2002 Prototype CLFR main componentry Develop absorber design Phase 1: 2003 1MW(th) Research Pilot. Vent to atmosphere Phase 2: 2004 5MW(e) Connect to Liddell Phase 3: 2005/6 36.5MW(e) Rollout12 GEEN 4830 – ECEN 5007 14/07/11
  • 14. Lidell (Ausra)13 GEEN 4830 – ECEN 5007 14/07/11
  • 15. Kimberlina (Bakersfield, CA), 2008.5 MWe, 25 MWth, 14 GEEN 4830 – ECEN 5007 14/07/11
  • 16. Kimberlina (Ausra)15 GEEN 4830 – ECEN 5007 14/07/11
  • 17. Puerto Errado (Murcia, Spain) 2009.1.4 Mwe (Novatec Biosol - Prointec) 16 GEEN 4830 – ECEN 5007 14/07/11
  • 18. Puerto Errado17 GEEN 4830 – ECEN 5007 14/07/11
  • 19. Puerto Errado18 GEEN 4830 – ECEN 5007 14/07/11
  • 20. Puerto Errado 2 (under construction)19 GEEN 4830 – ECEN 5007 14/07/11
  • 21. SPG Pilot plant at PSA (Spain)20 GEEN 4830 – ECEN 5007 14/07/11
  • 22. Hybrid solar-gas cooling installation at ETSISeville21 GEEN 4830 – ECEN 5007 14/07/11