Upcoming SlideShare
×

Two dimensional geometric transformations

15,414 views
14,769 views

Published on

Published in: Education
9 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
Your message goes here
• Be the first to comment

Views
Total views
15,414
On SlideShare
0
From Embeds
0
Number of Embeds
14
Actions
Shares
0
994
0
Likes
9
Embeds 0
No embeds

No notes for slide

Two dimensional geometric transformations

1. 1. Two-Dimensional Geometric Transformations
2. 2. Two-Dimensional Geometric Transformations• Basic Transformations • Translation • Rotation • Scaling• Composite Transformations• Other transformations • Reflection • Shear
3. 3. Translation•Translation transformation •Translation vector or shift vector T = (tx, ty)•Rigid-body transformation •Moves objects without deformation y y P’ T T p x x
4. 4. RotationRotation transformation (anticlockwise) x’=rcos(θ+Φ)= rcosθcosΦ - rsin θsinΦ y’=rsin(θ+Φ)= rcosθsinΦ + rsin θcosΦ y x=rcosΦ y=rsin Φ P’ (x’,y’) x’=x cosθ - ysinθ y’=xsinθ+ycosθ θ P(x,y) r Φ x P’= R· P
5. 5. RotationGeneral Pivot point rotationx’=xr+(x- xr)cosθ - (y- yr)sinθ y P’ (x’,y’)y’=yr+(x- xr)sinθ+(y- yr)cosθ θ P(x,y) r Φ (xr,yr) x
6. 6. ScalingScaling transformation Scaling factors, sx and sy y y x x
7. 7. Scaling Fixed point
8. 8. Matrix Representations and Homogeneous Coordinates•Homogeneous Coordinates•Matrix representations • Translation
9. 9. Matrix Representations Matrix representations Scaling Rotation
10. 10. Composite TransformationsTranslations
11. 11. Composite TransformationsScaling
12. 12. Composite TransformationsRotations
13. 13. General Pivot-Point Rotation•Rotations about any selected pivot point (xr,yr) •Translate-rotate-translate
14. 14. General Pivot-Point Rotation
15. 15. General Fixed-Point ScalingScaling with respect to a selected fixed position (x f,yf)
16. 16. General Fixed-Point ScalingTranslate-scale-translate
17. 17. Concatenation PropertiesMatrix multiplication is associative. A·B ·C = (A·B )·C = A·(B ·C)Transformation products may not be commutative  Be careful about the order in which the composite matrix is evaluated.  Except for some special cases: Two successive rotations Two successive translations Two successive scalings rotation and uniform scaling
18. 18. Concatenation PropertiesReversing the order  A sequence of transformations is performed may affect the transformed position of an object.
19. 19. ReflectionA transformation produces a mirror image of an object.Axis of reflection A line in the xy plane A line perpendicular to the xy plane The mirror image is obtained by rotating the object 180 0 about the reflection axis.Rotation path Axis in xy plane: in a plane perpendicular to the xy plane. Axis perpendicular to xy plane: in the xy plane.
20. 20. ReflectionReflection about the x axis
21. 21. ReflectionReflection about the y axis
22. 22. ReflectionReflection relative to the coordinate origin
23. 23. ReflectionReflection of an object relative to an axis perpendicular to the xy plane through P rfl
24. 24. ReflectionReflection about the line y = x
25. 25. ShearThe x-direction shear relative to x axis If shx = 2:
26. 26. ShearThe x-direction shear relative to y = yref If shx = ½ yref = -1: 1 1/2 3/2
27. 27. ShearThe y-direction shear relative to x = xref 3/2 If shy = ½ xref = -1: 1/2 1