Upcoming SlideShare
×

Graphing Absolute Value Functions

46,861 views

Published on

This slidecast is a tutorial on how to graph linear absolute value functions written in standard form by finding the coordinates of the vertex and using the slope to plot additional points.

Published in: Education, Technology
1 Like
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• No kidding! v

Are you sure you want to  Yes  No

Are you sure you want to  Yes  No
Views
Total views
46,861
On SlideShare
0
From Embeds
0
Number of Embeds
153
Actions
Shares
0
113
2
Likes
1
Embeds 0
No embeds

No notes for slide

Graphing Absolute Value Functions

1. 1. Graphing Absolute Value Equations
2. 2. Key Points <ul><li>Standard form: </li></ul><ul><li>y = |mx + b| + c </li></ul><ul><li>Vertex: (- b / m , c) </li></ul><ul><li>The graph will look like a v, even when m is negative </li></ul>
3. 3. Graphing y = |2x + 2| - 2 <ul><li>Step 1: identify b, m, and c </li></ul><ul><ul><ul><li>m = 4 </li></ul></ul></ul><ul><ul><ul><li>b = 4 </li></ul></ul></ul><ul><ul><ul><li>c = -2 </li></ul></ul></ul>
4. 4. Graphing y = |2x + 2| - 2 <ul><li>Step 2: find the vertex </li></ul><ul><li>(- 2 / 2 , -2) or (-1, -2) </li></ul><ul><li>Step 3:Plot the vertex </li></ul>
5. 5. Graphing y = |2x + 2| - 2 <ul><li>Step 4: interpret the slope </li></ul><ul><li>m = 2 or up 2 / over 1 </li></ul><ul><li>First go up and right </li></ul><ul><li>Next go up and left to get </li></ul><ul><li>the other half of the graph </li></ul>
6. 6. Graphing y = |2x + 2| - 2 <ul><li>Step 5: connect your points! </li></ul>
7. 7. Now, graph y = |-2x + 6| - 4 <ul><li>Step 1: identify b, m, and c </li></ul><ul><li>Step 2: find the vertex </li></ul><ul><li>Step 3: plot the vertex </li></ul><ul><li>Step 4: interpret and graph the slope </li></ul><ul><li>Step 5: connect your points </li></ul>
8. 8. y = |-3x + 6| - 2 <ul><li>m = -2 </li></ul><ul><li>b = 6 </li></ul><ul><li>c = -4 </li></ul><ul><li>Vertex: (- 6 / -3 , -2) or (2, -2) </li></ul><ul><li>Slope: up 2 / over 1 </li></ul>