
Be the first to like this
Published on
Traditional crossratio methods (TCR) project a light pattern and use invariant properties of projective geometry to estimate the gaze position. Advantages of the TCR methods include robustness to …
Traditional crossratio methods (TCR) project a light pattern and use invariant properties of projective geometry to estimate the gaze position. Advantages of the TCR methods include robustness to large head movements and in general requires just a one time per user calibration. However, the accuracy of TCR methods decay significantly for head movements along the camera optical axis, mainly due to the angular difference between the optical and visual axis of the eye. In this paper we propose a depth compensation crossratio (DCR) method that improves the accuracy of TCR methods for large head depth variations. Our solution compensates the angular offset using a 2D onscreen vector computed from a simple calibration procedure. The length of the 2D vector, which varies with head distance, is adjusted by a scale factor that is estimated from relative size variations of the corneal reflection pattern. The proposed DCR solution was compared to a TCR method using synthetic and real data from 2 users. An average improvement of 40% was observed with synthetic data, and 8% with the real data.
Be the first to like this
Be the first to comment