THE DSP SOLUTION SPECTRUM FOR MEDICAL IMAGING APPLICATIONS  USING FPGA SAVITA 1 st  Year M.tech, DSP CET  DIGITAL SIGNAL P...
INTRODUCTION <ul><li>The combined requirements of fast time to market and high performance processing are driving the use ...
  FIELD PROGRAMMABLE GATE ARRAYS (FPGA) <ul><li>Providing higher performance than GPP and DSP ASSPs alone. </li></ul><ul><...
FPGA…   FPGA… Figure 1 CET  DIGITAL SIGNAL PROCESSING
FPGA… <ul><li>DSP MATRIX </li></ul><ul><li>Replace the DSP with a higher frequency model </li></ul><ul><li>Rewrite portion...
FPGA… <ul><li>FPGA CO-PROCESSING SOLUTION </li></ul><ul><li>This approach leverages the existing code base of a single DSP...
FPGA… <ul><li>Figure 2 </li></ul>CET  DIGITAL SIGNAL PROCESSING
FPGA… <ul><li>Custom Processor (CusP) is software programmed processor consisting of building block functions with reconfi...
CT SCANNER <ul><li>First developed in the early 1970s, steady technological improvements have made this type of scanner an...
CT SCANNER <ul><li>Figure 1. CT Imaging Data Flow </li></ul>CET  DIGITAL SIGNAL PROCESSING
CT SCANNER <ul><li>Figure 2. Computed Tomography (CT) Back Projection </li></ul>CET  DIGITAL SIGNAL PROCESSING
CT SCANNER CET  DIGITAL SIGNAL PROCESSING
HEART MITRAL VALVE: 2D IMAGE CET  DIGITAL SIGNAL PROCESSING
HEART MITRAL VALVE WITH COLOR FLOW CET  DIGITAL SIGNAL PROCESSING
DIFFERENCE BETWEEN DSP AND FPGA <ul><li>The max clock rate of DSP is 1GHZ and FPGA is 370MHZ </li></ul><ul><li>Max instruc...
APPLICATIONS  <ul><li>Digital signal processing </li></ul><ul><li>Medical imaging </li></ul><ul><li>Computer vision </li><...
ADVANTAGES  <ul><li>FPGAs offer additional functionality, faster execution speeds, and lower power requirements. </li></ul...
CONCLUSION <ul><li>FPGA vendors are directing major efforts to address DSP applications for medical imaging. Consequently,...
THANK YOU CET  DIGITAL SIGNAL PROCESSING
Upcoming SlideShare
Loading in …5
×

Main (3)

638 views

Published on

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
638
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
5
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Main (3)

  1. 1. THE DSP SOLUTION SPECTRUM FOR MEDICAL IMAGING APPLICATIONS USING FPGA SAVITA 1 st Year M.tech, DSP CET DIGITAL SIGNAL PROCESSING
  2. 2. INTRODUCTION <ul><li>The combined requirements of fast time to market and high performance processing are driving the use of FPGAs in video, image and signal processing applications. </li></ul><ul><li>Computerized Axial Tomography (CAT scanner), which captures a series of cross-sectional views of body projections that can be intelligently assembled into three-dimensional images. </li></ul>CET DIGITAL SIGNAL PROCESSING
  3. 3.   FIELD PROGRAMMABLE GATE ARRAYS (FPGA) <ul><li>Providing higher performance than GPP and DSP ASSPs alone. </li></ul><ul><li>The additional spectrum of FPGA solutions include: </li></ul><ul><li>Using FPGAs to distribute and collect data to and from a matrix of DSP ASSPs </li></ul><ul><li>Using the FPGA as a coprocessor or custom peripheral to a DSP </li></ul><ul><li>Using embedded soft CPUs and the parallel DSP processing </li></ul><ul><li>structures within the FPGA to eliminate the DSP ASSPs </li></ul><ul><li>Figure 1 </li></ul>CET DIGITAL SIGNAL PROCESSING
  4. 4. FPGA… FPGA… Figure 1 CET DIGITAL SIGNAL PROCESSING
  5. 5. FPGA… <ul><li>DSP MATRIX </li></ul><ul><li>Replace the DSP with a higher frequency model </li></ul><ul><li>Rewrite portions of the software into pipelined assembly code </li></ul><ul><li>Creates a DSP matrix where multiple DSPs are arrayed together to deliver parallel DSP processing. </li></ul><ul><li>The core difficulty with using DSPs for all pixel processing relates to cost. </li></ul><ul><li>Although multiple DSPs can be utilized to obtain higher parallel processing, the costs rise very quickly as the process is implemented. </li></ul>CET DIGITAL SIGNAL PROCESSING
  6. 6. FPGA… <ul><li>FPGA CO-PROCESSING SOLUTION </li></ul><ul><li>This approach leverages the existing code base of a single DSP software image with the massively parallel processor resources embedded within the FPGA. </li></ul><ul><li>The DSP continues to execute the majority of the code including all complex control plane processing, allowing the FPGA to act as a custom peripheral or coprocessor to accelerate any process intensive code within the imaging algorithm </li></ul>CET DIGITAL SIGNAL PROCESSING
  7. 7. FPGA… <ul><li>Figure 2 </li></ul>CET DIGITAL SIGNAL PROCESSING
  8. 8. FPGA… <ul><li>Custom Processor (CusP) is software programmed processor consisting of building block functions with reconfigurable interconnections between the blocks </li></ul><ul><li>Custom instruction using </li></ul><ul><li>hardware extensions of the soft </li></ul><ul><li>CPU instruction set, such as a </li></ul><ul><li>floating-point instruction </li></ul><ul><li>implemented in hardware </li></ul><ul><li>Custom peripheralcan be used with internal or external CPU </li></ul><ul><li>Table 1 </li></ul>CET DIGITAL SIGNAL PROCESSING
  9. 9. CT SCANNER <ul><li>First developed in the early 1970s, steady technological improvements have made this type of scanner an invaluable radiologic diagnostic device. </li></ul><ul><li>It is a medical imaging tool that provides clear pictures of the internal structures of the body. Utilizing a beam of x rays and a radiation detector, it supplies data to a computer, which then constructs a three-dimensional image. </li></ul><ul><li>The images produced by conventional film x rays are often fuzzy because many of the internal structures are superimposed on each other. Tomography was developed to reduce this fuzziness and allow for the imaging of specific areas in the body. </li></ul>CET DIGITAL SIGNAL PROCESSING
  10. 10. CT SCANNER <ul><li>Figure 1. CT Imaging Data Flow </li></ul>CET DIGITAL SIGNAL PROCESSING
  11. 11. CT SCANNER <ul><li>Figure 2. Computed Tomography (CT) Back Projection </li></ul>CET DIGITAL SIGNAL PROCESSING
  12. 12. CT SCANNER CET DIGITAL SIGNAL PROCESSING
  13. 13. HEART MITRAL VALVE: 2D IMAGE CET DIGITAL SIGNAL PROCESSING
  14. 14. HEART MITRAL VALVE WITH COLOR FLOW CET DIGITAL SIGNAL PROCESSING
  15. 15. DIFFERENCE BETWEEN DSP AND FPGA <ul><li>The max clock rate of DSP is 1GHZ and FPGA is 370MHZ </li></ul><ul><li>Max instructions per clock in DSP is 4 to 8 and in FPGA is 100s to 1000s </li></ul><ul><li>The ease of programming in DSP is C, C++, Software flow and in FPGA is HDL, Hardware flow </li></ul><ul><li>I/O Flexibility in DSP is limited and in FPGA is much flexible </li></ul><ul><li>Memory management in DSP is Built-In and FPGA it is manual </li></ul><ul><li>Power consumption in DSP is low and in FPGA is high </li></ul>CET DIGITAL SIGNAL PROCESSING
  16. 16. APPLICATIONS <ul><li>Digital signal processing </li></ul><ul><li>Medical imaging </li></ul><ul><li>Computer vision </li></ul><ul><li>Speech recognition </li></ul><ul><li>Computer hardware emultion and a growing range of other areas </li></ul>CET DIGITAL SIGNAL PROCESSING
  17. 17. ADVANTAGES <ul><li>FPGAs offer additional functionality, faster execution speeds, and lower power requirements. </li></ul><ul><li>A growing advantage of an FPGA-based system is that we upgrade features by sending software and hardware improvements. </li></ul><ul><li>The ability to upgrade an expensive piece of medical imaging equipment by a simple file transfer means a longer time-in-market for instrument manufacturers and cost savings for healthcare establishments needing to replace equipment. </li></ul>CET DIGITAL SIGNAL PROCESSING
  18. 18. CONCLUSION <ul><li>FPGA vendors are directing major efforts to address DSP applications for medical imaging. Consequently, FPGA solutions will increasingly provide the processing power new medical imaging applications require to handle challenges such as ultra-high signal processing performance, very-high memory bandwidth, and increased interconnectivity between processing elements. </li></ul>CET DIGITAL SIGNAL PROCESSING
  19. 19. THANK YOU CET DIGITAL SIGNAL PROCESSING

×