SlideShare a Scribd company logo
1 of 42
Download to read offline
Thinking about rare
alleles in flies and
humans
Kevin Thornton
Ecology & Evolutionary Biology
UC Irvine
Schmidt et al. doi:10.1371/journal.pgen.1000998
+
http://www.illumina.comClark, A. G., et al. doi:10.1038/nature06341
http://commons.wikimedia.org/wiki/Maps_of_Africa#/media/File:AfricaCIA-HiRes.jpg
DS
DS,DY
DY
DS = D. simulans,
DY = D. yakuba
A B C D E F G H IReference
A B C D E F D E F G H ISample
Cridland, J. M., & Thornton, K. R. doi:10.1093/gbe/evq001
Rogers, R. L. et al. doi:10.1093/molbev/msu124
differentially to adaptive changes. In D. melanogaster, the X
chromosome contains greater repetitive content (Mackay
et al. 2012), displays different gene density (Adams et al.
2000), has potentially smaller population sizes (Wright 1931;
Andolfatto 2001), lower levels of background selection
(Charlesworth 2012), and an excess of genes involved in
female-specific expression (Ranz et al. 2003) in comparison
to the autosomes. Furthermore, the X chromosome is hemi-
zygous in males, exposing recessive mutations to the full
effects of selection more often than comparable loci on the
autosomes (Charlesworth et al. 1987). Hence, the incidence of
duplications on the X and the types of genes affected may
each species (as a control for genome quality and false pos-
itives) (Drosophila Twelve Genomes Consortium 2007; Hu
et al. 2013). Genomes are sequenced to high coverage of
50–150Â for a total of 42 complete genomes (supplementary
tables S1–S5, Supplementary Material online, see Materials
and Methods). We have used mapping orientation of
paired-end reads to identify recently derived, segregating du-
plications in these samples <25kb in length that are sup-
ported by three or more divergently oriented read pairs (see
Materials and Methods, supplementary text S1, tables S6 and
S7, Supplementary Material online). We limit analysis to re-
gions of the genome, which can be assayed with coverage
FIG. 1. Tandem duplications in 20 sample strains of Drosophila yakuba. Regions spanned by divergently oriented reads are shown with sample strains
plotted on different rows, whereas axes list genomic location in Mbp. Duplications are more common around the centromeres, especially on
chromosome 2. Frequencies are shaded in grayscale according to frequency, with high-frequency variants shown in solid black. The D. simulans X
chromosome appears to have an excess of high-frequency variants in comparison to the D. simulans autosomes and the D. yakuba X chromosome.
Tandem Duplications in Nonmodel Drosophila doi:10.1093/molbev/msu124 MBE
Rogers, R. L. et al. doi:10.1093/molbev/msu124
D. yakuba D. simulans
Whole gene 248 296
Partial Gene 745 462
Intergenic 745 577
mapping patterns indicative of a modified duplication surrounding jingwei in Drosophila yakuba line NY66-2. Duplications
ly oriented paired-end reads (blue) as well as with split read mapping of long molecule sequencing (purple). Deletions in
apped read mapping of long molecule reads (red) as well as multiple long-spanning read pairs at the tail of mapping distan
encing (green) just upstream from jgw. Up to 20% of duplicates observed have long-spanning read pairs indicative of putativ
. doi:10.1093/molbev/msu124
Rogers, R. L. et al. doi:10.1093/molbev/msu124
yakuba and 76 in D. simulans where both breakpoints fall
derived from parental genes in parallel orientation
a result of 10.4% of tandem duplications that capture g
D. yakuba and 9.5% of tandem duplications that
coding sequences in D. simulans. These numbers are
eral agreement with rates of chimeric genes formati
mated from a within-genome study of D. melanog
16.0% compared with the rate of formation of du
genes (Rogers et al. 2009).
FIG. 8. Abnormal gene structures. Duplicated sequence is highlighted
with bold colors and is framed by the dashed box. (A) The partial du-
plication of a coding sequence (blue) results in the recruitment of pre-
viously upstream noncoding sequence (dashed lines) to create a novel
open reading frame (blue and turquoise). (B) Tandem duplication where
both boundaries fall within coding sequences results in a chimeric gene.
FIG. 9. Dual promoter genes. Duplicated sequence is highligh
bold colors and is framed by the dashed box. Tandem duplicatio
both boundaries fall within coding sequences results in a chim
which contains two promoters, one which facilitates transcr
one direction, the other facilitating transcription from the
strand. The chimera is capable of making partial antisense tra
Rogers et al. . doi:10.1093/molbev/msu124 M
Rogers, R. L. et al. doi:10.1093/molbev/msu124
D. yakuba D. simulans
Chimeric
gene
structures
78 38
Recruited
ncDNA
143 96
0.00.20.40.60.8
SFS for Duplications in D. simulansSFS for Duplications in D. yakubaA B SFS for X−linked muta
0.00.20.40.60.8
C
0.00.20.40.60.8
Figure 1: SFS for tandem duplications in D. yakuba and D. simulans, co
ascertainment bias. A. Site frequency spectra on the autosomes (black) and on t
in D. yakuba. B. SFS on the autosomes (black) and on the X (grey) in D. si
SFS for X-linked intronic SNPs (black) and duplicates (white). The excess of hig
variants on the X in D. simulans suggests widespread selection for tandem duplic
D. simulans X.
A B
Figure 5: A) Gene ontology classes overrepresented by species among singly duplicated
genes or among multiply duplicated genes. B) Number of genes duplicated by species. MostRogers, R. L. et al. Submitted (1)
D. yakuba D. simulans D. melanogaster
12 MY
μwholegene
1.17 × 10−9
6.03 × 10−10
μchim
μrecruit
3.46 × 10−10
3.70 × 10−10
2.42 × 10−10
8.52× 10−11
Ne
1.21 × 106
5.93 × 105
Figure 6: Genomewide population mutation rates for all duplic
sizes (Ne), and per gene mutation rates (µ) for gene structures pr
duplication, recruitment of non-coding sequence, and chimeric ge
mutation rates and mutation limited evolution leads to low levels
Rogers, R. L. et al. Submitted (1)
Schrider, D. R. et al. doi:10.1534/genetics.115.174912
Table 1: Activated genes
Chimeras Tissue Upregulated Total
Female Carcass 5 76
Female Ovary 11 76
Male Carcass 10 76
Male Testes 7 76
All 24 76
Whole Gene Tissue Upregulated Total
Female Carcass 3 66
Female Ovary 2 66
Male Carcass 1 66
Male Testes 0 66
All 5 66
Whole Gene and 100 bp Intergenic Tissue Upregulated Total
Female Carcass 3 58
Female Ovary 2 58
Male Carcass 1 58
Male Testes 0 58
All 5 58
Rogers, R. L. et al. doi:10.1534/g3.114.013532
Rogers, R. L. et al. Submitted (2)
GE18451 GE18452 GE18453GE18452’Chimera
Figure 2: Chimeric gene structures result in novel expression patterns. A tandem duplication
that does not respect gene boundaries unites the 50
end of GE18453 with the 30
end of
GE18451 to produce a chimeric gene on chromosome 2L. Plot shows quantile normalized
coverage in RNA seq data for sample (red) and reference (grey) with HMM output (blue)Rogers, R. L. et al. Submitted (2)
Hu, X., & Worton, R. G., doi:10.1002/humu.1380010103
GENE DUPLICATION IN HUMAN DISEASE 5
TABLE 1. A Summary on Reported Cases of Partial Gene Duplication Associated With Human Diseases
Number of
independent Exons(s) Translational
Genes duplications duplicated" reading frameb Disorders' References
HPRT 1
LDL receptor 3
Dystrophin 10
1
13
1
2
a-Galactosidase A 1
Factor VIII 1
LPL 1
2.3
2-8
9-12
13-15
8.9
3-11
38-43
50-52
3, 4
45-51
20-41
3,4
2-7
22-27
ND
ND
13-42
5-11
17
13
2-6
6 hartial)
In-frame
In-frame
Shift
Shift
Shift
Shift
Shift
Shift
In-frame
In-frame
Shift
In-frame
In-frame
ND
ND
ND
In-frame
shift
shift
ND
Lesch-Hyhan syndrome
Familial hyper
cholesterolemia
DMD
DMD
DMD
DMD
DMD
DMD
Intermediate
Intermediate
BMD
BMD
ND
DMD/BMD
BMD
DMD
DMD
Fabry disease
Yang et al., 1984, 1988
Lehrman et al.. 1987a
Top et al., 1990
Lelli et al.. 1991
Hu et al.. 1988,1990
Greenberg et al., 1988
Den Dunnen et al., 1989
Angelini et al., 1990
Roberts et al., 1991
Bernstein et al.. 1989
In-h-ame Hemophilia A Casula et al., 1990
~~ ~ , ND Lipoprotein lipase deficiency Devlin et al., 1990
Type 11 collagen 1 bbp In-frame Spondyloepiphyseal dysplasia Tiller et al., 1990
C1 inhibitor 1 4 In-frame Hereditory angioedema Stoppa-Lyonnet et al., 1990
p-Galactosidase 1 165 bp In-frame G,,-gangliosidosis Yoshida et al., 1991
"ND, not defined.
the majority of cases,the readingkame status of the mRNA was not actuallydeterminedbut was predicted based on the assumption
that the exons contained in the duplicated segment were spliced correctly to the exons flanking the duplicated segment. ND, not
determined.
'DMD-Duchenne muscular dystrophy. BMD-Becker muscular dystrophy. Intermediateintermediate phenotype of the muscular
(within exon 48)
dystrophy.
the original copy in a head-to-tail direct orienta- tandem duplication of a limited number of nucle-
Schmidt et al. doi:10.1371/journal.pgen.1000998
1/15 1/151/15 2/15 1/151/15
1/14 1/122
1/1181/120 1/1181/124
2/117
2/1182/119
1/122
1/119 1/118
2/118
1/121 3/114
1/115
1/114
1/119
1/113
1/119
1/120
1/120
1/119
1/120
3/119
1/119
A klarsichtDGRP
DSPR
Insertion in an Exon
3/14 11/95
4/121D Cyp6a20
B Notch
1/15 1/1211/122
C Delta
1/114 1/120
* Same insertion in both resources
***
*
*
Cridland, J. M., et al. doi:10.1093/molbev/mst129
0.00.20.40.60.81.0
1 2 3 4 5 6 7+
Observed TEs
Observed SNPs
Expected
DSPR
.81.0
Observed TEs
Observed SNPs
Expected
DGRPments.
Mb)
Auto Low
0.33
Both
4.83
4.47
4.61
5.05
3.24
4.28
3.64
7.14
3.86
5.73
3.55
4.90
apping Resources . doi:10.1093/molbev/mst129 MBE
http://mbe.oxDownloadedfrom
0.00.20.40.60.81.0
1 2 3 4 5 6 7+
Observed TEs
Observed SNPs
Expected
0.00.20.40.60.81.0
1 2 3 4 5 6 7+
Observed TEs
Observed SNPs
Expected
DGRP
FIG. 3. Derived allele count spectra for the DSRP lines and the DGRP25
lines where a positive presence or absence call was made for each
insertion in each line, 6,613 insertions in the DSPR and 3,274 in the
DGRP25. Count spectra for SNPs is from SNPs in introns 86bp. 2
tests between observed and expected distributions result in P 0 for
Table 5. TE Density for 15 Individual Families of Elements.
Mean Density (TE/Mb)
Element Resource X High X Low Auto High Auto Low
roo DGRP25 0.39 0.37 0.32 0.33
DSPR 0.80 0.88 0.65 0.68
297 DGRP25 0.05 0.00 0.02 0.01
DSPR 0.05 0.00 0.04 0.00
412 DGRP25 0.03 0.01 0.03 0.07
DSPR 0.06 0.08 0.09 0.12
F DGRP25 0.02 0.06 0.04 0.06
DSPR 0.07 0.08 0.12 0.13
17.6 DGRP25 0.01 0.00 0.01 0.02
DSPR 0.02 0.00 0.02 0.06
Bari1 DGRP25 0.01 0.00 0.04 0.01
DSPR 0.02 0.02 0.06 0.02
copia DGRP25 0.01 0.00 0.02 0.03
DSPR 0.09 0.02 0.14 0.19
H DGRP25 0.01 0.00 0.01 0.00
DSPR 0.00 0.00 0.01 0.00
hopper DGRP25 0.10 0.01 0.00 0.00
DSPR 0.10 0.04 0.02 0.02
INE-1 DGRP25 0.42 1.88 0.03 0.48
DSPR 0.45 2.03 0.04 0.55
jockey DGRP25 0.15 0.12 0.19 0.13
Table 4. TE Density in the X and Autosomes.
TE/Mb
DGRP25 DSPR Both
X, all 3.82 6.38 4.83
Autosomes, all 3.51 5.93 4.47
X, high recombination 3.71 6.00 4.61
X, low recombination 3.93 6.76 5.05
2L, high recombination 2.27 4.73 3.24
2L, low recombination 3.23 5.89 4.28
2R, high recombination 2.82 4.89 3.64
2R, low recombination 6.17 8.63 7.14
3L, high recombination 2.96 5.23 3.86
3L, low recombination 4.74 7.26 5.73
3R, high recombination 2.81 4.68 3.55
3R, low recombination 3.72 6.70 4.90
atUniversityofCalifornia,IrvineonSeptember1http://mbe.oxfordjournals.org/Downloadedfrom
Cridland, J. M., et al. doi:10.1534/genetics.114.170837
most extreme example of this was the gene nessy, where the
average expression level of the line with the TE was 40
standard deviations lower than TE free lines. This is likely
an effectively null mutation at this gene segregating in na-
ture. Comparing the average standard deviation in mean
expression per DGRP line for TE-associated transcripts to
transcripts with no TEs in or within 10 kb indicates that
TE-associated transcripts have a larger mean standard de-
viation, 0.33 vs. 0.28, (t-test; P = 1.0e-22). Since the DGRP incorporating TE information into work on expression and
Table 3 Mean z-scores for transcripts with TEs
Category Mean z-score N
Within exon 23.44 249
Introns #400 bp 21.03 72
Within 200 bp of acceptor site 20.90 64
Within 200 bp of donor site 20.67 64
Within first intron 20.37 545
Not within first intron 20.11 852
#500 bp of TSS 20.43 186
501 bp to 2 kb of TSS 20.01 418
.2 kb of TSS 20.05 2121
#500 bp of TES 20.52 213
501 bp to 2 kb of TES 20.04 347
.2 kb of TES 20.02 1976
Mean z-scores are calculated from the transcript/TE pairs for all transcripts with an
insertion in each location category.
Figure 2 Transposable elements as a class of variation. Probability–probability
plot of observed and expected P-values from t-tests of all cases where four or
more lines show an independent TE insertion in the same location category
for the same transcript.
most extreme example of this was the gene nessy, where the
average expression level of the line with the TE was 40
standard deviations lower than TE free lines. This is likely
an effectively null mutation at this gene segregating in na-
ture. Comparing the average standard deviation in mean
expression per DGRP line for TE-associated transcripts to
transcripts with no TEs in or within 10 kb indicates that
TE-associated transcripts have a larger mean standard de-
viation, 0.33 vs. 0.28, (t-test; P = 1.0e-22). Since the DGRP
line with the TE insertion is not used in calculating the
standard deviation this suggests that transcripts with TEs
may be those that are more tolerant of variation in expres-
incorporating TE information into work on expression and
phenotypic analyses. Given that our analysis has focused on
insertions of large effect, this is a conservative estimate of
the number of TEs that may contribute to expression differ-
Table 3 Mean z-scores for transcripts with TEs
Category Mean z-score N
Within exon 23.44 249
Introns #400 bp 21.03 72
Within 200 bp of acceptor site 20.90 64
Within 200 bp of donor site 20.67 64
Within first intron 20.37 545
Not within first intron 20.11 852
#500 bp of TSS 20.43 186
501 bp to 2 kb of TSS 20.01 418
.2 kb of TSS 20.05 2121
#500 bp of TES 20.52 213
501 bp to 2 kb of TES 20.04 347
.2 kb of TES 20.02 1976
Mean z-scores are calculated from the transcript/TE pairs for all transcripts with an
insertion in each location category.
Figure 2 Transposable elements as a class of variation. Probability–probability
plot of observed and expected P-values from t-tests of all cases where four or
more lines show an independent TE insertion in the same location category
for the same transcript.
Cridland, J. M., et al. doi:10.1534/genetics.114.170837
Summary, part 1
• Structural variants are typically rare
• Duplications have non-additive effects on gene
expression
• Low change of precise convergence at molecular level
• TEs are strong candidates for “RALE” in flies
• All of these variants are poorly-tagged in current-
generation association studies
Several genomic regions have been implicated in linkage studies30
and, recently, replicated evidence implicating specific genes has been
reported. Increasing evidence suggests an overlap in genetic suscept-
ibility with schizophrenia, a psychotic disorder with many similar-
ities to BD. In particular association findings have been reported with
expanded reference group analysis (Supplementary Table 9), it is of
interest that the closest gene to the signal at rs1526805 (P 5 2.2 3
1027
) is KCNC2 which encodes the Shaw-related voltage-gated pot-
assium channel. Ion channelopathies are well-recognized as causes of
episodic central nervous system disease, including seizures, ataxias
−log10
(P)
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
0
5
10
15
Chromosome
Type 2 diabetes
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
22
XX
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
Coronary artery disease
Crohn’s disease
Hypertension
Rheumatoid arthritis
Type 1 diabetes
Bipolar disorder
Figure 4 | Genome-wide scan for seven diseases. For each of seven diseases
2log10 of the trend test P value for quality-control-positive SNPs, excluding
those in each disease that were excluded for having poor clustering after
visual inspection, are plotted against position on each chromosome.
Chromosomes are shown in alternating colours for clarity, with
P values ,1 3 1025
highlighted in green. All panels are truncated at
2log10(P value) 5 15, although some markers (for example, in the MHC in
T1D and RA) exceed this significance threshold.
666
Nature©2007 Publishing Group
Burton, P. R., et al. doi:doi:10.1038/nature05911
ironments.
inflated if
etic effects
ed familial
genotypes
rom pedi-
mated from
rom family
ronmental
ecause the
pirical esti-
airs of rela-
netic com-
y it ranged
nces to the
a were used
remarkably
ree of their
is not over-
Allele frequency
Effect size
Very rare Common
Low
High
Rare Low frequency
0.001 0.005 0.05
Intermediate
Modest
Rare alleles
causing
Mendelian
disease
Few examples of
high-effect
common variants
influencing
common disease
Common
variants
implicated in
common disease
by GWA
Rare variants of
small effect
very hard to identify
by genetic means
Low-frequency
variants with
intermediate effect
3.0
1.5
1.1
50.0
Figure 1 | Feasibility of identifying genetic variants by risk allele frequency
and strength of genetic effect (odds ratio). Most emphasis and interest lies
in identifying associations with characteristics shown within diagonal dotted
lines. Adapted from ref. 42.
REVIEWS
Manolio, T. A., et al. doi:10.1038/nature08494
• Li  Leal
• Madsen  Browning
• c-Alpha
• SKAT
0 2 4 6 8 10
0246810
Causative mutations on paternal allele
Causativemutationsonmaternalallele
0.05
0.1
0.15
0.2
0.25
0.3 0.35
0.4
“gene-based”
Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
vs.
0 2 4 6 8 10
0246810
Causative mutations on paternal allele
Causativemutationsonmaternalallele
0.2
0.4
0.6
0.8
1
1.2
1.4
“Risch”-like
Risch, N. (1990). AJHG, 46(2), 222–228.
Locus
non-
risk
risk
1 A a
2 B b
3 C c
“A”
{“a”
Locus 1
“a” is an allelic series
with variable effect sizes
−4 −2 0 2 4
0.00.20.40.60.81.0
Value
Relativedensity
Fitness, σS
2
Gaussian noise, σe
2
Effect sizes, mean = λ
VG=4µdσS
2
, H2
=
VG
VG + σe
2
Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
Turelli, M. (1984). Theoretical Population Biology, 25(2), 138–193.
H1 =
X
i
ei H2 =
X
j
ej
G =
p
H1 ⇥ H2
P = G + N(0, e)
Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
VG ⇡ 2µ 2
s
Slatkin, M. (1987). Genetical Research, 50(1), 53–62.
Kaul, R., et al. (1994). Journal of Inherited Metabolic Disease, 17(3), 356–358.
N = 20,000
8N gens
N = 106
500 gens
Thornton, K. R. doi:10.1534/genetics.114.165019
http://github.com/molpopgen/fwdpp
http://github.com/molpopgen/foRward
pos = 0.623, n = 1,
s = 0
pos = 0.113, n = 2,
s = 0.001
pos = 0.004, n = 1,
s = -0.2
I1 I2, n=1 I3, n = 1n=1 I2, n=1
Ancestral
chromosome
Mutations
2N Gametes
N Diploids Diploid 1 Diploid 2
V(E)=0.075^2 V(E)=0.053^2
0.025
0.050
0.075
0.025
0.050
0.075
RapidgrowthNogrowth
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Mean effect size (λ)
Meanbroad−senseheritabilityduetolocus
Model Additive Multiplicative Mult. recessive Gene−based
0 20 40 60 80 100
051015
Position (kbp)
−log10(p)
Common
Common, causative
Rare
Rare, causative
Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
xtentofthegene ofinterest;
power to detect, at levels of
We turn now to a discussio
focusing here only on the m
2015
25
20
20
15
15
10
10
5
5
30
0
0
25
20
15
10
5
5
30
0
0
25
30
25
30
CAD
RA
Burton, P. R., et al. doi:doi:10.1038/nature05911
Additive Multiplicative Mult. recessive Gene−based
0.00
0.25
0.50
0.75
1.00
0.00
0.25
0.50
0.75
1.00
RapidgrowthNogrowth
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5
Mean effect size (λ)
Poweratgenome−widesignificancethreshold
Test Logit ESM MB−r SKAT−O [Beta(1,25)] SKAT−O [linear]
MAF of most asscociated SNP
Frequency
0.0 0.1 0.2 0.3 0.4 0.5
0.000.020.040.060.080.10
Wray, N. R., et al. PLoS Biology, 9(1), e1000579.
Gibson, G. doi:10.1038/nrg3118
See also:
Wray, N. R., et al. PLoS Biology, 9(1), e1000579.
Gibson, G. doi:10.1038/nrg3118
See also:
e of common variation genome-wide on the Affymetrix chip;
verage (by design) of rare variants, including many structural
(thereby reducing power to detect rare, penetrant, alleles)25
;
eswithdefining thefullgenomicextentof thegene of interest;
pite the sample size, relatively low power to detect, at levels of
and fine-mapping wo
required before such in
ments about the molec
We turn now to a dis
focusing here only on
25
20
20
15
15
10
10
5
5
30
0
0
25
20
20
15
15
10
10
5
5
30
0
0
25
20
15
10
5
30
0
0
25
20
15
10
5
30
25
20
15
10
5
30
25
20
15
10
5
30
BD
Observedteststatistic
CAD
HT RA
QQ plot from Burton, P. R., et al. doi:doi:10.1038/nature05911
Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
ESMK =
KX
i=i
✓
log10Pi + log10
i
M
◆
Summary, part 2
• GWAS observations consistent with a simple model
of loss of function (recessive) mutations in genes
• The (genetic) model matters much more than the
demographic assumptions!
• Standard models are rejected by the data.
• We need to get our hands on better GWAS data
sets!
1/15 1/151/15 2/15 1/151/15
1/14 1/122
1/1181/120 1/1181/124
2/117
2/1182/119
1/122
1/119 1/118
2/118
1/121 3/114
1/115
1/114
1/119
1/113
1/119
1/120
1/120
1/119
1/120
3/119
1/119
A klarsichtDGRP
DSPR
Insertion in an Exon
3/14 11/95
4/121D Cyp6a20
B Notch
1/15 1/1211/122
C Delta
1/114 1/120
* Same insertion in both resources
***
*
*
Cridland, J. M., et al. doi:10.1093/molbev/mst129
King, E. G., et a. doi:10.1371/journal.pgen.1004322 McClellan, J.,  King, M.-C. doi:10.1016/j.cell.2010.03.032
ary factors, including the impact of the
illness on selection (Pritchard and Cox,
2002). In order to be maintained at poly-
morphic frequencies worldwide, com-
mon variants with even modest influence
on disease must withstand selective
pressure in every generation. Not sur-
prisingly, therefore, the common alleles
with the best documented relationship
to disease are associated with disorders
that arise later in life, i.e., Alzheimer dis-
ease’s or age-related macular degenera-
tion. For illnesses that impact reproduc-
tive fitness, balancing positive selection
is often demonstrable. Illness in these
cases may arise from interaction between
genetic and environmental factors, such
that an otherwise adaptive mechanism
or trait is deleterious in certain individu-
als. For example, adaptive inflammatory
responses can cause autoimmune dis-
orders when turned against the host, or
efficient storage of calories can lead to
type II diabetes or to obesity in food-rich
cultures.
Both common and rare alleles may
lead to the same disease. For example,
common traits remains to be explained
(Goldstein, 2009). We further suggest
A recently published genome-wide
association study of autism (Wang et al.,
Figure 4. Genetic Heterogeneity of Severe Mental Illness
Recent genomic analyses have revealed many individually rare, or even de novo, micro-deletions, micro-
duplications, and point mutations associated with schizophrenia (red), autism (blue), or both (black). The
most frequently replicated genes and loci include DISC1, NRXN1 (neurexin), CNTNAP2, and SHANK3, as
well as genomic hotspots at 1q21.1, 15q13.3, 16p11.2, and 22q11.2.
Resources
• http://www.molpopgen.org/Data
• http://github.com/molpopgen
• http://github.com/ThorntonLab
Acknowledgements
• Julie Cridland, Andrew Foran, Rebekah Rogers,
Jaleal Sanjak, Ling Shao
• Peter Andolfatto, Tony Long, Stuart MacDonald
• Joseph Farran  Harry Mangalam
• NIH, UCI Center for Complex Biological Systems

More Related Content

What's hot

1. dna in forensic
1. dna in forensic1. dna in forensic
1. dna in forensicajengninda
 
DNA : a genetic material, replication damage and repair
DNA : a genetic material, replication  damage and repairDNA : a genetic material, replication  damage and repair
DNA : a genetic material, replication damage and repairAnilkumar C
 
Genome Sequencing in Finger Millet
Genome Sequencing in Finger MilletGenome Sequencing in Finger Millet
Genome Sequencing in Finger MilletVivek Suthediya
 
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteinsSpencer Bliven
 
Goldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy Landau
 
10.2 inheritance
10.2 inheritance10.2 inheritance
10.2 inheritanceBob Smullen
 
Nature structure and replication of genetic material
Nature structure and replication of genetic materialNature structure and replication of genetic material
Nature structure and replication of genetic materialYashwanth Jv
 
Chan_Gordenin_et_al_2012
Chan_Gordenin_et_al_2012Chan_Gordenin_et_al_2012
Chan_Gordenin_et_al_2012Kin Chan
 
Journal Club 2013-09-10: Pandya et al
Journal Club 2013-09-10: Pandya et alJournal Club 2013-09-10: Pandya et al
Journal Club 2013-09-10: Pandya et alSpencer Bliven
 
15.1 3 study guide ans
15.1 3 study guide ans15.1 3 study guide ans
15.1 3 study guide ansSam Cole
 

What's hot (19)

Genetic material
Genetic materialGenetic material
Genetic material
 
1. dna in forensic
1. dna in forensic1. dna in forensic
1. dna in forensic
 
DNA : a genetic material, replication damage and repair
DNA : a genetic material, replication  damage and repairDNA : a genetic material, replication  damage and repair
DNA : a genetic material, replication damage and repair
 
Genome Sequencing in Finger Millet
Genome Sequencing in Finger MilletGenome Sequencing in Finger Millet
Genome Sequencing in Finger Millet
 
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins
3DSIG 2014 Presentation: Systematic detection of internal symmetry in proteins
 
20150115_JQO_NYAPopulationGenomics
20150115_JQO_NYAPopulationGenomics20150115_JQO_NYAPopulationGenomics
20150115_JQO_NYAPopulationGenomics
 
CE-Symm jLBR talk
CE-Symm jLBR talkCE-Symm jLBR talk
CE-Symm jLBR talk
 
Goldy ABRCMS Poster Final
Goldy ABRCMS Poster FinalGoldy ABRCMS Poster Final
Goldy ABRCMS Poster Final
 
10.2 inheritance
10.2 inheritance10.2 inheritance
10.2 inheritance
 
Final Draft
Final DraftFinal Draft
Final Draft
 
cdd2012100a
cdd2012100acdd2012100a
cdd2012100a
 
Gene Structure
Gene StructureGene Structure
Gene Structure
 
Nature structure and replication of genetic material
Nature structure and replication of genetic materialNature structure and replication of genetic material
Nature structure and replication of genetic material
 
Chan_Gordenin_et_al_2012
Chan_Gordenin_et_al_2012Chan_Gordenin_et_al_2012
Chan_Gordenin_et_al_2012
 
Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level Regulatory RNA at epigenetic level
Regulatory RNA at epigenetic level
 
Molecular 50 questions
Molecular 50 questionsMolecular 50 questions
Molecular 50 questions
 
Journal Club 2013-09-10: Pandya et al
Journal Club 2013-09-10: Pandya et alJournal Club 2013-09-10: Pandya et al
Journal Club 2013-09-10: Pandya et al
 
15.1 3 study guide ans
15.1 3 study guide ans15.1 3 study guide ans
15.1 3 study guide ans
 
PhagePoster-HQ
PhagePoster-HQPhagePoster-HQ
PhagePoster-HQ
 

Viewers also liked

CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES
CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES
CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES Mary Barrera Muñoz
 
Hitch hiking journalclub
Hitch hiking journalclubHitch hiking journalclub
Hitch hiking journalclubKevin Thornton
 
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...Vatsal Shah
 
Food stamps
Food stampsFood stamps
Food stampsfragrom
 
SEO & Web Redesign - Before and After
SEO & Web Redesign - Before and AfterSEO & Web Redesign - Before and After
SEO & Web Redesign - Before and AfterDavy Bour
 
OpenConext Workshop TNC2014
OpenConext Workshop TNC2014OpenConext Workshop TNC2014
OpenConext Workshop TNC2014openconext
 
Именуем ресурсы для Windows 8 правильно
Именуем ресурсы для Windows 8 правильноИменуем ресурсы для Windows 8 правильно
Именуем ресурсы для Windows 8 правильноslavabobik
 
Mobistealth pro version
Mobistealth pro versionMobistealth pro version
Mobistealth pro versionfragrom
 
Green Hope Reserve, Nicaragua
Green Hope Reserve, NicaraguaGreen Hope Reserve, Nicaragua
Green Hope Reserve, NicaraguaIUCNGPAP
 
Ile-Alatau National Park, Kazakhstan
Ile-Alatau National Park, KazakhstanIle-Alatau National Park, Kazakhstan
Ile-Alatau National Park, KazakhstanIUCNGPAP
 

Viewers also liked (16)

CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES
CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES
CURSO DE SUPERACIÓN LENGUA CASTELLANA Y CIENCIAS NATURALES
 
Je
JeJe
Je
 
Hitch hiking journalclub
Hitch hiking journalclubHitch hiking journalclub
Hitch hiking journalclub
 
Analisis de Encuestas
Analisis de EncuestasAnalisis de Encuestas
Analisis de Encuestas
 
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...
MPLS -Novel approach of multi protocol label switching for Asynchronous Trans...
 
Food stamps
Food stampsFood stamps
Food stamps
 
SEO & Web Redesign - Before and After
SEO & Web Redesign - Before and AfterSEO & Web Redesign - Before and After
SEO & Web Redesign - Before and After
 
Happy life 8
Happy life 8Happy life 8
Happy life 8
 
OpenConext Workshop TNC2014
OpenConext Workshop TNC2014OpenConext Workshop TNC2014
OpenConext Workshop TNC2014
 
Rich poor
Rich poorRich poor
Rich poor
 
Vivo vitrothingamajig
Vivo vitrothingamajigVivo vitrothingamajig
Vivo vitrothingamajig
 
Именуем ресурсы для Windows 8 правильно
Именуем ресурсы для Windows 8 правильноИменуем ресурсы для Windows 8 правильно
Именуем ресурсы для Windows 8 правильно
 
Mobistealth pro version
Mobistealth pro versionMobistealth pro version
Mobistealth pro version
 
Green Hope Reserve, Nicaragua
Green Hope Reserve, NicaraguaGreen Hope Reserve, Nicaragua
Green Hope Reserve, Nicaragua
 
Strategy english
Strategy englishStrategy english
Strategy english
 
Ile-Alatau National Park, Kazakhstan
Ile-Alatau National Park, KazakhstanIle-Alatau National Park, Kazakhstan
Ile-Alatau National Park, Kazakhstan
 

Similar to Seminar2015

cytogenomics tools and techniques and chromosome sorting.pptx
cytogenomics tools and techniques and chromosome sorting.pptxcytogenomics tools and techniques and chromosome sorting.pptx
cytogenomics tools and techniques and chromosome sorting.pptxPABOLU TEJASREE
 
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptx
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptxbio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptx
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptxAmanda783100
 
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in space
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in spaceSeminar 1 ppt (ddr space)new edited...DNA damage and responses in space
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in spaceVinaykumararagi
 
Manipulatingproteins 111109090227-phpapp01
Manipulatingproteins 111109090227-phpapp01Manipulatingproteins 111109090227-phpapp01
Manipulatingproteins 111109090227-phpapp01joy000 renojo
 
Dna and chromosomes
Dna and chromosomesDna and chromosomes
Dna and chromosomesaljeirou
 
Duong_H_2008a
Duong_H_2008aDuong_H_2008a
Duong_H_2008aHao Duong
 
Inversion chromosome 8 ashadeep chandrareddy
Inversion chromosome 8 ashadeep chandrareddyInversion chromosome 8 ashadeep chandrareddy
Inversion chromosome 8 ashadeep chandrareddyashadeepchandrareddy
 
Dnaandchromosomes 111109071547-phpapp02
Dnaandchromosomes 111109071547-phpapp02Dnaandchromosomes 111109071547-phpapp02
Dnaandchromosomes 111109071547-phpapp02joy000 renojo
 
Genes, Genomics, and Chromosomes computational biology introduction .ppt
Genes, Genomics, and Chromosomes computational biology introduction .pptGenes, Genomics, and Chromosomes computational biology introduction .ppt
Genes, Genomics, and Chromosomes computational biology introduction .pptMohamedHasan816582
 
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...gan-navi
 
Basic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingBasic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingAamir Sharif
 
ORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCEORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCERanjan Kumar
 
Genetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 ClassGenetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 Classcanvasredband
 
Genetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 ClassGenetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 Classcanvasredband
 

Similar to Seminar2015 (20)

cytogenomics tools and techniques and chromosome sorting.pptx
cytogenomics tools and techniques and chromosome sorting.pptxcytogenomics tools and techniques and chromosome sorting.pptx
cytogenomics tools and techniques and chromosome sorting.pptx
 
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptx
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptxbio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptx
bio 111 lect 25-26 (2jgdrsrycmbbcrkhx).pptx
 
Deoxyribonucleic Acid (DNA)
Deoxyribonucleic Acid (DNA)Deoxyribonucleic Acid (DNA)
Deoxyribonucleic Acid (DNA)
 
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in space
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in spaceSeminar 1 ppt (ddr space)new edited...DNA damage and responses in space
Seminar 1 ppt (ddr space)new edited...DNA damage and responses in space
 
Manipulatingproteins 111109090227-phpapp01
Manipulatingproteins 111109090227-phpapp01Manipulatingproteins 111109090227-phpapp01
Manipulatingproteins 111109090227-phpapp01
 
Dna and chromosomes
Dna and chromosomesDna and chromosomes
Dna and chromosomes
 
Duong_H_2008a
Duong_H_2008aDuong_H_2008a
Duong_H_2008a
 
24.soto.dna techniques
24.soto.dna techniques24.soto.dna techniques
24.soto.dna techniques
 
Irobalieva et al 2015
Irobalieva et al 2015Irobalieva et al 2015
Irobalieva et al 2015
 
Inversion chromosome 8 ashadeep chandrareddy
Inversion chromosome 8 ashadeep chandrareddyInversion chromosome 8 ashadeep chandrareddy
Inversion chromosome 8 ashadeep chandrareddy
 
Dnaandchromosomes 111109071547-phpapp02
Dnaandchromosomes 111109071547-phpapp02Dnaandchromosomes 111109071547-phpapp02
Dnaandchromosomes 111109071547-phpapp02
 
SOAR Poster Final
SOAR Poster FinalSOAR Poster Final
SOAR Poster Final
 
Synthetic biology
Synthetic biologySynthetic biology
Synthetic biology
 
Genes, Genomics, and Chromosomes computational biology introduction .ppt
Genes, Genomics, and Chromosomes computational biology introduction .pptGenes, Genomics, and Chromosomes computational biology introduction .ppt
Genes, Genomics, and Chromosomes computational biology introduction .ppt
 
Replication of dna
Replication of dna Replication of dna
Replication of dna
 
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...
Identification and Characterization of Saccharomyces cerevisiae Cdc6 DNA-bind...
 
Basic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotypingBasic genetics ,mutation and karyotyping
Basic genetics ,mutation and karyotyping
 
ORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCEORGANELLAR GENOME AND ORGANELLAR INHERITENCE
ORGANELLAR GENOME AND ORGANELLAR INHERITENCE
 
Genetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 ClassGenetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 Class
 
Genetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 ClassGenetics Chapter 1 And 2 Class
Genetics Chapter 1 And 2 Class
 

Recently uploaded

Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPirithiRaju
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringPrajakta Shinde
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXDole Philippines School
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naJASISJULIANOELYNV
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...Universidade Federal de Sergipe - UFS
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024AyushiRastogi48
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPirithiRaju
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxmaryFF1
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx023NiWayanAnggiSriWa
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 

Recently uploaded (20)

Pests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdfPests of Bengal gram_Identification_Dr.UPR.pdf
Pests of Bengal gram_Identification_Dr.UPR.pdf
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Microteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical EngineeringMicroteaching on terms used in filtration .Pharmaceutical Engineering
Microteaching on terms used in filtration .Pharmaceutical Engineering
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTXALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
ALL ABOUT MIXTURES IN GRADE 7 CLASS PPTX
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
FREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by naFREE NURSING BUNDLE FOR NURSES.PDF by na
FREE NURSING BUNDLE FOR NURSES.PDF by na
 
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
REVISTA DE BIOLOGIA E CIÊNCIAS DA TERRA ISSN 1519-5228 - Artigo_Bioterra_V24_...
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 
Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024Vision and reflection on Mining Software Repositories research in 2024
Vision and reflection on Mining Software Repositories research in 2024
 
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdfPests of Blackgram, greengram, cowpea_Dr.UPR.pdf
Pests of Blackgram, greengram, cowpea_Dr.UPR.pdf
 
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptxECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
ECG Graph Monitoring with AD8232 ECG Sensor & Arduino.pptx
 
Bioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptxBioteknologi kelas 10 kumer smapsa .pptx
Bioteknologi kelas 10 kumer smapsa .pptx
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 

Seminar2015

  • 1. Thinking about rare alleles in flies and humans Kevin Thornton Ecology & Evolutionary Biology UC Irvine
  • 2. Schmidt et al. doi:10.1371/journal.pgen.1000998
  • 3. + http://www.illumina.comClark, A. G., et al. doi:10.1038/nature06341
  • 5. A B C D E F G H IReference A B C D E F D E F G H ISample Cridland, J. M., & Thornton, K. R. doi:10.1093/gbe/evq001
  • 6. Rogers, R. L. et al. doi:10.1093/molbev/msu124
  • 7. differentially to adaptive changes. In D. melanogaster, the X chromosome contains greater repetitive content (Mackay et al. 2012), displays different gene density (Adams et al. 2000), has potentially smaller population sizes (Wright 1931; Andolfatto 2001), lower levels of background selection (Charlesworth 2012), and an excess of genes involved in female-specific expression (Ranz et al. 2003) in comparison to the autosomes. Furthermore, the X chromosome is hemi- zygous in males, exposing recessive mutations to the full effects of selection more often than comparable loci on the autosomes (Charlesworth et al. 1987). Hence, the incidence of duplications on the X and the types of genes affected may each species (as a control for genome quality and false pos- itives) (Drosophila Twelve Genomes Consortium 2007; Hu et al. 2013). Genomes are sequenced to high coverage of 50–150Â for a total of 42 complete genomes (supplementary tables S1–S5, Supplementary Material online, see Materials and Methods). We have used mapping orientation of paired-end reads to identify recently derived, segregating du- plications in these samples <25kb in length that are sup- ported by three or more divergently oriented read pairs (see Materials and Methods, supplementary text S1, tables S6 and S7, Supplementary Material online). We limit analysis to re- gions of the genome, which can be assayed with coverage FIG. 1. Tandem duplications in 20 sample strains of Drosophila yakuba. Regions spanned by divergently oriented reads are shown with sample strains plotted on different rows, whereas axes list genomic location in Mbp. Duplications are more common around the centromeres, especially on chromosome 2. Frequencies are shaded in grayscale according to frequency, with high-frequency variants shown in solid black. The D. simulans X chromosome appears to have an excess of high-frequency variants in comparison to the D. simulans autosomes and the D. yakuba X chromosome. Tandem Duplications in Nonmodel Drosophila doi:10.1093/molbev/msu124 MBE Rogers, R. L. et al. doi:10.1093/molbev/msu124 D. yakuba D. simulans Whole gene 248 296 Partial Gene 745 462 Intergenic 745 577
  • 8. mapping patterns indicative of a modified duplication surrounding jingwei in Drosophila yakuba line NY66-2. Duplications ly oriented paired-end reads (blue) as well as with split read mapping of long molecule sequencing (purple). Deletions in apped read mapping of long molecule reads (red) as well as multiple long-spanning read pairs at the tail of mapping distan encing (green) just upstream from jgw. Up to 20% of duplicates observed have long-spanning read pairs indicative of putativ . doi:10.1093/molbev/msu124 Rogers, R. L. et al. doi:10.1093/molbev/msu124
  • 9. yakuba and 76 in D. simulans where both breakpoints fall derived from parental genes in parallel orientation a result of 10.4% of tandem duplications that capture g D. yakuba and 9.5% of tandem duplications that coding sequences in D. simulans. These numbers are eral agreement with rates of chimeric genes formati mated from a within-genome study of D. melanog 16.0% compared with the rate of formation of du genes (Rogers et al. 2009). FIG. 8. Abnormal gene structures. Duplicated sequence is highlighted with bold colors and is framed by the dashed box. (A) The partial du- plication of a coding sequence (blue) results in the recruitment of pre- viously upstream noncoding sequence (dashed lines) to create a novel open reading frame (blue and turquoise). (B) Tandem duplication where both boundaries fall within coding sequences results in a chimeric gene. FIG. 9. Dual promoter genes. Duplicated sequence is highligh bold colors and is framed by the dashed box. Tandem duplicatio both boundaries fall within coding sequences results in a chim which contains two promoters, one which facilitates transcr one direction, the other facilitating transcription from the strand. The chimera is capable of making partial antisense tra Rogers et al. . doi:10.1093/molbev/msu124 M Rogers, R. L. et al. doi:10.1093/molbev/msu124 D. yakuba D. simulans Chimeric gene structures 78 38 Recruited ncDNA 143 96
  • 10. 0.00.20.40.60.8 SFS for Duplications in D. simulansSFS for Duplications in D. yakubaA B SFS for X−linked muta 0.00.20.40.60.8 C 0.00.20.40.60.8 Figure 1: SFS for tandem duplications in D. yakuba and D. simulans, co ascertainment bias. A. Site frequency spectra on the autosomes (black) and on t in D. yakuba. B. SFS on the autosomes (black) and on the X (grey) in D. si SFS for X-linked intronic SNPs (black) and duplicates (white). The excess of hig variants on the X in D. simulans suggests widespread selection for tandem duplic D. simulans X. A B Figure 5: A) Gene ontology classes overrepresented by species among singly duplicated genes or among multiply duplicated genes. B) Number of genes duplicated by species. MostRogers, R. L. et al. Submitted (1)
  • 11. D. yakuba D. simulans D. melanogaster 12 MY μwholegene 1.17 × 10−9 6.03 × 10−10 μchim μrecruit 3.46 × 10−10 3.70 × 10−10 2.42 × 10−10 8.52× 10−11 Ne 1.21 × 106 5.93 × 105 Figure 6: Genomewide population mutation rates for all duplic sizes (Ne), and per gene mutation rates (µ) for gene structures pr duplication, recruitment of non-coding sequence, and chimeric ge mutation rates and mutation limited evolution leads to low levels Rogers, R. L. et al. Submitted (1) Schrider, D. R. et al. doi:10.1534/genetics.115.174912
  • 12. Table 1: Activated genes Chimeras Tissue Upregulated Total Female Carcass 5 76 Female Ovary 11 76 Male Carcass 10 76 Male Testes 7 76 All 24 76 Whole Gene Tissue Upregulated Total Female Carcass 3 66 Female Ovary 2 66 Male Carcass 1 66 Male Testes 0 66 All 5 66 Whole Gene and 100 bp Intergenic Tissue Upregulated Total Female Carcass 3 58 Female Ovary 2 58 Male Carcass 1 58 Male Testes 0 58 All 5 58 Rogers, R. L. et al. doi:10.1534/g3.114.013532 Rogers, R. L. et al. Submitted (2)
  • 13. GE18451 GE18452 GE18453GE18452’Chimera Figure 2: Chimeric gene structures result in novel expression patterns. A tandem duplication that does not respect gene boundaries unites the 50 end of GE18453 with the 30 end of GE18451 to produce a chimeric gene on chromosome 2L. Plot shows quantile normalized coverage in RNA seq data for sample (red) and reference (grey) with HMM output (blue)Rogers, R. L. et al. Submitted (2)
  • 14. Hu, X., & Worton, R. G., doi:10.1002/humu.1380010103 GENE DUPLICATION IN HUMAN DISEASE 5 TABLE 1. A Summary on Reported Cases of Partial Gene Duplication Associated With Human Diseases Number of independent Exons(s) Translational Genes duplications duplicated" reading frameb Disorders' References HPRT 1 LDL receptor 3 Dystrophin 10 1 13 1 2 a-Galactosidase A 1 Factor VIII 1 LPL 1 2.3 2-8 9-12 13-15 8.9 3-11 38-43 50-52 3, 4 45-51 20-41 3,4 2-7 22-27 ND ND 13-42 5-11 17 13 2-6 6 hartial) In-frame In-frame Shift Shift Shift Shift Shift Shift In-frame In-frame Shift In-frame In-frame ND ND ND In-frame shift shift ND Lesch-Hyhan syndrome Familial hyper cholesterolemia DMD DMD DMD DMD DMD DMD Intermediate Intermediate BMD BMD ND DMD/BMD BMD DMD DMD Fabry disease Yang et al., 1984, 1988 Lehrman et al.. 1987a Top et al., 1990 Lelli et al.. 1991 Hu et al.. 1988,1990 Greenberg et al., 1988 Den Dunnen et al., 1989 Angelini et al., 1990 Roberts et al., 1991 Bernstein et al.. 1989 In-h-ame Hemophilia A Casula et al., 1990 ~~ ~ , ND Lipoprotein lipase deficiency Devlin et al., 1990 Type 11 collagen 1 bbp In-frame Spondyloepiphyseal dysplasia Tiller et al., 1990 C1 inhibitor 1 4 In-frame Hereditory angioedema Stoppa-Lyonnet et al., 1990 p-Galactosidase 1 165 bp In-frame G,,-gangliosidosis Yoshida et al., 1991 "ND, not defined. the majority of cases,the readingkame status of the mRNA was not actuallydeterminedbut was predicted based on the assumption that the exons contained in the duplicated segment were spliced correctly to the exons flanking the duplicated segment. ND, not determined. 'DMD-Duchenne muscular dystrophy. BMD-Becker muscular dystrophy. Intermediateintermediate phenotype of the muscular (within exon 48) dystrophy. the original copy in a head-to-tail direct orienta- tandem duplication of a limited number of nucle-
  • 15. Schmidt et al. doi:10.1371/journal.pgen.1000998
  • 16. 1/15 1/151/15 2/15 1/151/15 1/14 1/122 1/1181/120 1/1181/124 2/117 2/1182/119 1/122 1/119 1/118 2/118 1/121 3/114 1/115 1/114 1/119 1/113 1/119 1/120 1/120 1/119 1/120 3/119 1/119 A klarsichtDGRP DSPR Insertion in an Exon 3/14 11/95 4/121D Cyp6a20 B Notch 1/15 1/1211/122 C Delta 1/114 1/120 * Same insertion in both resources *** * * Cridland, J. M., et al. doi:10.1093/molbev/mst129 0.00.20.40.60.81.0 1 2 3 4 5 6 7+ Observed TEs Observed SNPs Expected DSPR .81.0 Observed TEs Observed SNPs Expected DGRPments. Mb) Auto Low 0.33 Both 4.83 4.47 4.61 5.05 3.24 4.28 3.64 7.14 3.86 5.73 3.55 4.90 apping Resources . doi:10.1093/molbev/mst129 MBE http://mbe.oxDownloadedfrom 0.00.20.40.60.81.0 1 2 3 4 5 6 7+ Observed TEs Observed SNPs Expected 0.00.20.40.60.81.0 1 2 3 4 5 6 7+ Observed TEs Observed SNPs Expected DGRP FIG. 3. Derived allele count spectra for the DSRP lines and the DGRP25 lines where a positive presence or absence call was made for each insertion in each line, 6,613 insertions in the DSPR and 3,274 in the DGRP25. Count spectra for SNPs is from SNPs in introns 86bp. 2 tests between observed and expected distributions result in P 0 for Table 5. TE Density for 15 Individual Families of Elements. Mean Density (TE/Mb) Element Resource X High X Low Auto High Auto Low roo DGRP25 0.39 0.37 0.32 0.33 DSPR 0.80 0.88 0.65 0.68 297 DGRP25 0.05 0.00 0.02 0.01 DSPR 0.05 0.00 0.04 0.00 412 DGRP25 0.03 0.01 0.03 0.07 DSPR 0.06 0.08 0.09 0.12 F DGRP25 0.02 0.06 0.04 0.06 DSPR 0.07 0.08 0.12 0.13 17.6 DGRP25 0.01 0.00 0.01 0.02 DSPR 0.02 0.00 0.02 0.06 Bari1 DGRP25 0.01 0.00 0.04 0.01 DSPR 0.02 0.02 0.06 0.02 copia DGRP25 0.01 0.00 0.02 0.03 DSPR 0.09 0.02 0.14 0.19 H DGRP25 0.01 0.00 0.01 0.00 DSPR 0.00 0.00 0.01 0.00 hopper DGRP25 0.10 0.01 0.00 0.00 DSPR 0.10 0.04 0.02 0.02 INE-1 DGRP25 0.42 1.88 0.03 0.48 DSPR 0.45 2.03 0.04 0.55 jockey DGRP25 0.15 0.12 0.19 0.13 Table 4. TE Density in the X and Autosomes. TE/Mb DGRP25 DSPR Both X, all 3.82 6.38 4.83 Autosomes, all 3.51 5.93 4.47 X, high recombination 3.71 6.00 4.61 X, low recombination 3.93 6.76 5.05 2L, high recombination 2.27 4.73 3.24 2L, low recombination 3.23 5.89 4.28 2R, high recombination 2.82 4.89 3.64 2R, low recombination 6.17 8.63 7.14 3L, high recombination 2.96 5.23 3.86 3L, low recombination 4.74 7.26 5.73 3R, high recombination 2.81 4.68 3.55 3R, low recombination 3.72 6.70 4.90 atUniversityofCalifornia,IrvineonSeptember1http://mbe.oxfordjournals.org/Downloadedfrom
  • 17. Cridland, J. M., et al. doi:10.1534/genetics.114.170837
  • 18. most extreme example of this was the gene nessy, where the average expression level of the line with the TE was 40 standard deviations lower than TE free lines. This is likely an effectively null mutation at this gene segregating in na- ture. Comparing the average standard deviation in mean expression per DGRP line for TE-associated transcripts to transcripts with no TEs in or within 10 kb indicates that TE-associated transcripts have a larger mean standard de- viation, 0.33 vs. 0.28, (t-test; P = 1.0e-22). Since the DGRP incorporating TE information into work on expression and Table 3 Mean z-scores for transcripts with TEs Category Mean z-score N Within exon 23.44 249 Introns #400 bp 21.03 72 Within 200 bp of acceptor site 20.90 64 Within 200 bp of donor site 20.67 64 Within first intron 20.37 545 Not within first intron 20.11 852 #500 bp of TSS 20.43 186 501 bp to 2 kb of TSS 20.01 418 .2 kb of TSS 20.05 2121 #500 bp of TES 20.52 213 501 bp to 2 kb of TES 20.04 347 .2 kb of TES 20.02 1976 Mean z-scores are calculated from the transcript/TE pairs for all transcripts with an insertion in each location category. Figure 2 Transposable elements as a class of variation. Probability–probability plot of observed and expected P-values from t-tests of all cases where four or more lines show an independent TE insertion in the same location category for the same transcript. most extreme example of this was the gene nessy, where the average expression level of the line with the TE was 40 standard deviations lower than TE free lines. This is likely an effectively null mutation at this gene segregating in na- ture. Comparing the average standard deviation in mean expression per DGRP line for TE-associated transcripts to transcripts with no TEs in or within 10 kb indicates that TE-associated transcripts have a larger mean standard de- viation, 0.33 vs. 0.28, (t-test; P = 1.0e-22). Since the DGRP line with the TE insertion is not used in calculating the standard deviation this suggests that transcripts with TEs may be those that are more tolerant of variation in expres- incorporating TE information into work on expression and phenotypic analyses. Given that our analysis has focused on insertions of large effect, this is a conservative estimate of the number of TEs that may contribute to expression differ- Table 3 Mean z-scores for transcripts with TEs Category Mean z-score N Within exon 23.44 249 Introns #400 bp 21.03 72 Within 200 bp of acceptor site 20.90 64 Within 200 bp of donor site 20.67 64 Within first intron 20.37 545 Not within first intron 20.11 852 #500 bp of TSS 20.43 186 501 bp to 2 kb of TSS 20.01 418 .2 kb of TSS 20.05 2121 #500 bp of TES 20.52 213 501 bp to 2 kb of TES 20.04 347 .2 kb of TES 20.02 1976 Mean z-scores are calculated from the transcript/TE pairs for all transcripts with an insertion in each location category. Figure 2 Transposable elements as a class of variation. Probability–probability plot of observed and expected P-values from t-tests of all cases where four or more lines show an independent TE insertion in the same location category for the same transcript. Cridland, J. M., et al. doi:10.1534/genetics.114.170837
  • 19. Summary, part 1 • Structural variants are typically rare • Duplications have non-additive effects on gene expression • Low change of precise convergence at molecular level • TEs are strong candidates for “RALE” in flies • All of these variants are poorly-tagged in current- generation association studies
  • 20. Several genomic regions have been implicated in linkage studies30 and, recently, replicated evidence implicating specific genes has been reported. Increasing evidence suggests an overlap in genetic suscept- ibility with schizophrenia, a psychotic disorder with many similar- ities to BD. In particular association findings have been reported with expanded reference group analysis (Supplementary Table 9), it is of interest that the closest gene to the signal at rs1526805 (P 5 2.2 3 1027 ) is KCNC2 which encodes the Shaw-related voltage-gated pot- assium channel. Ion channelopathies are well-recognized as causes of episodic central nervous system disease, including seizures, ataxias −log10 (P) 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 0 5 10 15 Chromosome Type 2 diabetes 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 22 XX 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 Coronary artery disease Crohn’s disease Hypertension Rheumatoid arthritis Type 1 diabetes Bipolar disorder Figure 4 | Genome-wide scan for seven diseases. For each of seven diseases 2log10 of the trend test P value for quality-control-positive SNPs, excluding those in each disease that were excluded for having poor clustering after visual inspection, are plotted against position on each chromosome. Chromosomes are shown in alternating colours for clarity, with P values ,1 3 1025 highlighted in green. All panels are truncated at 2log10(P value) 5 15, although some markers (for example, in the MHC in T1D and RA) exceed this significance threshold. 666 Nature©2007 Publishing Group Burton, P. R., et al. doi:doi:10.1038/nature05911
  • 21. ironments. inflated if etic effects ed familial genotypes rom pedi- mated from rom family ronmental ecause the pirical esti- airs of rela- netic com- y it ranged nces to the a were used remarkably ree of their is not over- Allele frequency Effect size Very rare Common Low High Rare Low frequency 0.001 0.005 0.05 Intermediate Modest Rare alleles causing Mendelian disease Few examples of high-effect common variants influencing common disease Common variants implicated in common disease by GWA Rare variants of small effect very hard to identify by genetic means Low-frequency variants with intermediate effect 3.0 1.5 1.1 50.0 Figure 1 | Feasibility of identifying genetic variants by risk allele frequency and strength of genetic effect (odds ratio). Most emphasis and interest lies in identifying associations with characteristics shown within diagonal dotted lines. Adapted from ref. 42. REVIEWS Manolio, T. A., et al. doi:10.1038/nature08494
  • 22. • Li Leal • Madsen Browning • c-Alpha • SKAT
  • 23. 0 2 4 6 8 10 0246810 Causative mutations on paternal allele Causativemutationsonmaternalallele 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 “gene-based” Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258 vs. 0 2 4 6 8 10 0246810 Causative mutations on paternal allele Causativemutationsonmaternalallele 0.2 0.4 0.6 0.8 1 1.2 1.4 “Risch”-like Risch, N. (1990). AJHG, 46(2), 222–228.
  • 24. Locus non- risk risk 1 A a 2 B b 3 C c “A” {“a” Locus 1 “a” is an allelic series with variable effect sizes
  • 25. −4 −2 0 2 4 0.00.20.40.60.81.0 Value Relativedensity Fitness, σS 2 Gaussian noise, σe 2 Effect sizes, mean = λ VG=4µdσS 2 , H2 = VG VG + σe 2 Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258 Turelli, M. (1984). Theoretical Population Biology, 25(2), 138–193.
  • 26. H1 = X i ei H2 = X j ej G = p H1 ⇥ H2 P = G + N(0, e) Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258 VG ⇡ 2µ 2 s Slatkin, M. (1987). Genetical Research, 50(1), 53–62.
  • 27. Kaul, R., et al. (1994). Journal of Inherited Metabolic Disease, 17(3), 356–358.
  • 28. N = 20,000 8N gens N = 106 500 gens
  • 29. Thornton, K. R. doi:10.1534/genetics.114.165019 http://github.com/molpopgen/fwdpp http://github.com/molpopgen/foRward pos = 0.623, n = 1, s = 0 pos = 0.113, n = 2, s = 0.001 pos = 0.004, n = 1, s = -0.2 I1 I2, n=1 I3, n = 1n=1 I2, n=1 Ancestral chromosome Mutations 2N Gametes N Diploids Diploid 1 Diploid 2
  • 30. V(E)=0.075^2 V(E)=0.053^2 0.025 0.050 0.075 0.025 0.050 0.075 RapidgrowthNogrowth 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 Mean effect size (λ) Meanbroad−senseheritabilityduetolocus Model Additive Multiplicative Mult. recessive Gene−based
  • 31.
  • 32. 0 20 40 60 80 100 051015 Position (kbp) −log10(p) Common Common, causative Rare Rare, causative Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258
  • 33. xtentofthegene ofinterest; power to detect, at levels of We turn now to a discussio focusing here only on the m 2015 25 20 20 15 15 10 10 5 5 30 0 0 25 20 15 10 5 5 30 0 0 25 30 25 30 CAD RA Burton, P. R., et al. doi:doi:10.1038/nature05911
  • 34. Additive Multiplicative Mult. recessive Gene−based 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 RapidgrowthNogrowth 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 Mean effect size (λ) Poweratgenome−widesignificancethreshold Test Logit ESM MB−r SKAT−O [Beta(1,25)] SKAT−O [linear]
  • 35. MAF of most asscociated SNP Frequency 0.0 0.1 0.2 0.3 0.4 0.5 0.000.020.040.060.080.10 Wray, N. R., et al. PLoS Biology, 9(1), e1000579. Gibson, G. doi:10.1038/nrg3118 See also:
  • 36. Wray, N. R., et al. PLoS Biology, 9(1), e1000579. Gibson, G. doi:10.1038/nrg3118 See also:
  • 37. e of common variation genome-wide on the Affymetrix chip; verage (by design) of rare variants, including many structural (thereby reducing power to detect rare, penetrant, alleles)25 ; eswithdefining thefullgenomicextentof thegene of interest; pite the sample size, relatively low power to detect, at levels of and fine-mapping wo required before such in ments about the molec We turn now to a dis focusing here only on 25 20 20 15 15 10 10 5 5 30 0 0 25 20 20 15 15 10 10 5 5 30 0 0 25 20 15 10 5 30 0 0 25 20 15 10 5 30 25 20 15 10 5 30 25 20 15 10 5 30 BD Observedteststatistic CAD HT RA QQ plot from Burton, P. R., et al. doi:doi:10.1038/nature05911 Thornton, K. R., et al. doi:10.1371/journal.pgen.1003258 ESMK = KX i=i ✓ log10Pi + log10 i M ◆
  • 38.
  • 39. Summary, part 2 • GWAS observations consistent with a simple model of loss of function (recessive) mutations in genes • The (genetic) model matters much more than the demographic assumptions! • Standard models are rejected by the data. • We need to get our hands on better GWAS data sets!
  • 40. 1/15 1/151/15 2/15 1/151/15 1/14 1/122 1/1181/120 1/1181/124 2/117 2/1182/119 1/122 1/119 1/118 2/118 1/121 3/114 1/115 1/114 1/119 1/113 1/119 1/120 1/120 1/119 1/120 3/119 1/119 A klarsichtDGRP DSPR Insertion in an Exon 3/14 11/95 4/121D Cyp6a20 B Notch 1/15 1/1211/122 C Delta 1/114 1/120 * Same insertion in both resources *** * * Cridland, J. M., et al. doi:10.1093/molbev/mst129 King, E. G., et a. doi:10.1371/journal.pgen.1004322 McClellan, J., King, M.-C. doi:10.1016/j.cell.2010.03.032 ary factors, including the impact of the illness on selection (Pritchard and Cox, 2002). In order to be maintained at poly- morphic frequencies worldwide, com- mon variants with even modest influence on disease must withstand selective pressure in every generation. Not sur- prisingly, therefore, the common alleles with the best documented relationship to disease are associated with disorders that arise later in life, i.e., Alzheimer dis- ease’s or age-related macular degenera- tion. For illnesses that impact reproduc- tive fitness, balancing positive selection is often demonstrable. Illness in these cases may arise from interaction between genetic and environmental factors, such that an otherwise adaptive mechanism or trait is deleterious in certain individu- als. For example, adaptive inflammatory responses can cause autoimmune dis- orders when turned against the host, or efficient storage of calories can lead to type II diabetes or to obesity in food-rich cultures. Both common and rare alleles may lead to the same disease. For example, common traits remains to be explained (Goldstein, 2009). We further suggest A recently published genome-wide association study of autism (Wang et al., Figure 4. Genetic Heterogeneity of Severe Mental Illness Recent genomic analyses have revealed many individually rare, or even de novo, micro-deletions, micro- duplications, and point mutations associated with schizophrenia (red), autism (blue), or both (black). The most frequently replicated genes and loci include DISC1, NRXN1 (neurexin), CNTNAP2, and SHANK3, as well as genomic hotspots at 1q21.1, 15q13.3, 16p11.2, and 22q11.2.
  • 42. Acknowledgements • Julie Cridland, Andrew Foran, Rebekah Rogers, Jaleal Sanjak, Ling Shao • Peter Andolfatto, Tony Long, Stuart MacDonald • Joseph Farran Harry Mangalam • NIH, UCI Center for Complex Biological Systems