SlideShare a Scribd company logo
1 of 41
Nombre: Moisés Jorquera Apablaza
Profesor: Sergio Calvo
•Nosotros empleamos este teorema ,si una función f(x) es
continua en el segmento a x b, tiene una derivada f’(x)
en cada uno de los puntos interiores de éste, y f(a)=f(b)
para su variable independiente existe por lo menos un valor
xo donde a<xo<b es tal que f’(xo)=0.

•Esto  quiere decir que se            debe   evaluar    los
extremos, teniendo que ser iguales.
Representación Geométrica del
             Teorema




•En palabras sencillas, si una curva regular sale y llega a la misma altura,
en algún punto tendrá tangente horizontal, así se dice que se cumple el
teorema.
F(x) = x(x-2)
0 ≤x0 ≤2, siendo 0=a y 2=b

F(x)=x2- 2x

Se saca el valor de la f(0)= 0 ------- > El valor de a es 0.
Se saca el valor de la f (2)=4-4= 0 -------> El valor de b es 2.


Ahora se saca la F´(x)
F´(x)= 2x-2
Efectuando el reemplazo por la variable que queremos
conocer(x0), igualando la f´(x) a 0.

Quedando por definitiva, lo siguiente:

2x0-2=0 /2

X0 = 1

∴ Se cumple el teorema de Rolle, ya que , f(a) = f=b , y el valor
de X0, se encuentra en el intervalo comprendido entre el 0 y
el 2, se cumplen las condiciones.
•Si una función f(x) es continua en el segmento a    x   b y tiene
derivada en cada punto interior de éste, se tiene:
La interpretación geométrica del Teorema de Lagrange nos
señala ,que existirá un punto donde la tangente es paralela a
la secante.
•Definición:




Tomándose en cuenta que x0, A < X0< B, por lo tanto el V. Medio debe
ubicarse entre a y b, para que el teorema se cumpla.
• Esta regla se emplea para el cálculo de límites indeterminados
de la forma 0/0 e ∞/∞.

• Definición
lím
x -> 0            = 0/0

Con L´ Hopital, aplicando la definición

 lím
x -> 0            = 0/0

= f´(x)/ g´(x)=           =1
•Para calcular los límites de expresiones indeterminadas de la forma 0*
hay que transformar los correspondientes productos f1 (x) * f2 (x) en el
límite donde x a f1(x)=0 y límite cuando x a f2(x)= .
En la fracción f1(x) / 1/f2(x) 0/0
              f2(x) / 1/ f1(x)   /


•Hay dos caminos, nosotros debemos ocupar, el que no haga el
trabajo mas complicado.
-∞                           0                         +∞
F’ (x)             -                              -



•Intervalo f´(x) es negativo, es decreciente para esos valores de x
A medida que x disminuye, el valor de la f(x), disminuye.

•Intervalo f´(x) es positivo, es creciente para esos valores de x
A medida que x aumenta, el valorde la f(x), aumenta.
x       y
-3    -0.2
-2   -0.25
-1   -0.33
0     -0.5
1       -1
3       1
4     0.5
5    0.33
X      Y
-5   -0.25
-4   -0.35    Gráfico en la siguiente
-3    -1.33   diapositiva
-1   -0.5
0     -0.16
1       0
2      0.25
4      0.50
5      0.28
6     0.20



                    •Siendo -2 y 3, asíntotas
•Se nota que la f, se acerca en los puntos restringidos, pero no
los “toca”.(-2,3)
-∞                            0                             +∞
  F’ (x)            -                                 +



            La f(x) es decreciente, en         La f(x) es creciente,
            este intervalo                     en este intervalo


•Metodo de f´´(x) sirve para obtener mínimos y máximos relativos.

•Si el pto.crítico, reemplazado en la f´´(x)       0; se dice que el pto crítico es
un mín. relativo

•En caso contrario, si dicho pto.resulta ser negativo, este equivale a un
Máximo Relativo
X           Y
-3    181/41
-2    32/17
-1    1
0     0
0.8   ¾
1     1
2     32/17
3     181/41
4     512/257

More Related Content

What's hot

Aplicación de la derivada #15490941
Aplicación de la derivada #15490941Aplicación de la derivada #15490941
Aplicación de la derivada #15490941Corona78
 
Limite de una funcion
Limite de una funcionLimite de una funcion
Limite de una funcionklevere
 
Diapositiva semana 16
Diapositiva semana 16Diapositiva semana 16
Diapositiva semana 16Crstn Pnags
 
Derivada autor nicolás trías
Derivada   autor nicolás trías Derivada   autor nicolás trías
Derivada autor nicolás trías Nicolas Trias
 
Definición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadasDefinición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadasEduca-training
 
Limites, continuidad y derivadas de funciones
Limites, continuidad y derivadas de funcionesLimites, continuidad y derivadas de funciones
Limites, continuidad y derivadas de funcionesCristina Mui
 
Derivadas y sus aplicaciones
Derivadas y sus aplicacionesDerivadas y sus aplicaciones
Derivadas y sus aplicacionesguest570379
 
Límites.pptx jean carlos manzaba
Límites.pptx jean carlos manzabaLímites.pptx jean carlos manzaba
Límites.pptx jean carlos manzabamanzaba05
 
Limites indeterminados
Limites indeterminadosLimites indeterminados
Limites indeterminadoslanana24
 
Definición de la derivada
Definición de la derivadaDefinición de la derivada
Definición de la derivadaCatag20
 
Estudio completo funciones trigonométricas. representación gráfica
Estudio completo funciones trigonométricas. representación gráfica Estudio completo funciones trigonométricas. representación gráfica
Estudio completo funciones trigonométricas. representación gráfica fermin15
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricositzeltania
 
Aplicaciones derivadas
Aplicaciones derivadasAplicaciones derivadas
Aplicaciones derivadasErick Guaman
 
Limites matematica
Limites matematicaLimites matematica
Limites matematicaClaudia
 

What's hot (19)

Aplicación de la derivada #15490941
Aplicación de la derivada #15490941Aplicación de la derivada #15490941
Aplicación de la derivada #15490941
 
Limite de una funcion
Limite de una funcionLimite de una funcion
Limite de una funcion
 
Ppt limites
Ppt limitesPpt limites
Ppt limites
 
Diapositiva semana 16
Diapositiva semana 16Diapositiva semana 16
Diapositiva semana 16
 
Derivada autor nicolás trías
Derivada   autor nicolás trías Derivada   autor nicolás trías
Derivada autor nicolás trías
 
Semana 12
Semana 12Semana 12
Semana 12
 
Definición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadasDefinición de límites, continuidad y derivadas
Definición de límites, continuidad y derivadas
 
Limites, continuidad y derivadas de funciones
Limites, continuidad y derivadas de funcionesLimites, continuidad y derivadas de funciones
Limites, continuidad y derivadas de funciones
 
Derivadas y sus aplicaciones
Derivadas y sus aplicacionesDerivadas y sus aplicaciones
Derivadas y sus aplicaciones
 
Límites.pptx jean carlos manzaba
Límites.pptx jean carlos manzabaLímites.pptx jean carlos manzaba
Límites.pptx jean carlos manzaba
 
Limites indeterminados
Limites indeterminadosLimites indeterminados
Limites indeterminados
 
Representación De Funciones
Representación De FuncionesRepresentación De Funciones
Representación De Funciones
 
Derivadas
DerivadasDerivadas
Derivadas
 
Definición de la derivada
Definición de la derivadaDefinición de la derivada
Definición de la derivada
 
Inversa
InversaInversa
Inversa
 
Estudio completo funciones trigonométricas. representación gráfica
Estudio completo funciones trigonométricas. representación gráfica Estudio completo funciones trigonométricas. representación gráfica
Estudio completo funciones trigonométricas. representación gráfica
 
Limites trigonometricos
Limites trigonometricosLimites trigonometricos
Limites trigonometricos
 
Aplicaciones derivadas
Aplicaciones derivadasAplicaciones derivadas
Aplicaciones derivadas
 
Limites matematica
Limites matematicaLimites matematica
Limites matematica
 

Viewers also liked (9)

Fórmula influenciabilidad
Fórmula influenciabilidadFórmula influenciabilidad
Fórmula influenciabilidad
 
Desarrollo cuestionario 3ra prueba
Desarrollo cuestionario 3ra pruebaDesarrollo cuestionario 3ra prueba
Desarrollo cuestionario 3ra prueba
 
10 cualidades del líder del futuro
10 cualidades del líder del futuro10 cualidades del líder del futuro
10 cualidades del líder del futuro
 
Caso cancillería de chile desarrollo organizacional
Caso cancillería de chile desarrollo organizacionalCaso cancillería de chile desarrollo organizacional
Caso cancillería de chile desarrollo organizacional
 
Case study 3
Case study 3Case study 3
Case study 3
 
foda muevelo music
foda muevelo musicfoda muevelo music
foda muevelo music
 
Crm & cloud computing
Crm & cloud computingCrm & cloud computing
Crm & cloud computing
 
Cuestionario tercera prueba apunte3 completo
Cuestionario tercera prueba apunte3 completoCuestionario tercera prueba apunte3 completo
Cuestionario tercera prueba apunte3 completo
 
Aplicaciones simples de calculo integral
Aplicaciones simples de calculo integralAplicaciones simples de calculo integral
Aplicaciones simples de calculo integral
 

Similar to Teorema de Rolle y Lagrange en

Similar to Teorema de Rolle y Lagrange en (20)

Presentación cálculo
Presentación cálculoPresentación cálculo
Presentación cálculo
 
Derivadas. aplicaciones
Derivadas. aplicacionesDerivadas. aplicaciones
Derivadas. aplicaciones
 
Gráfica de funciones
Gráfica de funcionesGráfica de funciones
Gráfica de funciones
 
MATEMATICAS II
MATEMATICAS IIMATEMATICAS II
MATEMATICAS II
 
Resumen de analisis_matii
Resumen de analisis_matiiResumen de analisis_matii
Resumen de analisis_matii
 
Teoremas rolle,bolzano,
Teoremas rolle,bolzano,Teoremas rolle,bolzano,
Teoremas rolle,bolzano,
 
Funciones resueltos
Funciones resueltosFunciones resueltos
Funciones resueltos
 
Aplicacion de la derivada
Aplicacion de la derivadaAplicacion de la derivada
Aplicacion de la derivada
 
Temas adicionales a la derivada
Temas adicionales a la derivadaTemas adicionales a la derivada
Temas adicionales a la derivada
 
Concavidad puntos de inflexión asintotas
Concavidad puntos de inflexión asintotasConcavidad puntos de inflexión asintotas
Concavidad puntos de inflexión asintotas
 
Teoremas de los límites
Teoremas de los límitesTeoremas de los límites
Teoremas de los límites
 
C 29 aplicaciones derivadas
C 29 aplicaciones derivadasC 29 aplicaciones derivadas
C 29 aplicaciones derivadas
 
Aplicaciones derivadas
Aplicaciones derivadasAplicaciones derivadas
Aplicaciones derivadas
 
Representacion curvas
Representacion curvasRepresentacion curvas
Representacion curvas
 
4 Temas Adicionales De La Derivada
4 Temas Adicionales De La Derivada4 Temas Adicionales De La Derivada
4 Temas Adicionales De La Derivada
 
A derivadas
A derivadasA derivadas
A derivadas
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Metodos numericos2
Metodos numericos2Metodos numericos2
Metodos numericos2
 
Propiedades funciones
Propiedades funcionesPropiedades funciones
Propiedades funciones
 
Aplicaciones de-la-derivada
Aplicaciones de-la-derivadaAplicaciones de-la-derivada
Aplicaciones de-la-derivada
 

More from Moisés Felipe Jorquera Apablaza (8)

Caso hummer proceso administrativo
Caso hummer proceso administrativoCaso hummer proceso administrativo
Caso hummer proceso administrativo
 
Vale vista y boleta de garantía bancaria
Vale vista y boleta de garantía bancariaVale vista y boleta de garantía bancaria
Vale vista y boleta de garantía bancaria
 
Vale Vista y boletas de garantia bancarias
Vale Vista y boletas de garantia bancariasVale Vista y boletas de garantia bancarias
Vale Vista y boletas de garantia bancarias
 
Capítulo 6 economía
Capítulo 6 economíaCapítulo 6 economía
Capítulo 6 economía
 
Diapo psg
Diapo psgDiapo psg
Diapo psg
 
Capítulo 6 economía
Capítulo 6 economíaCapítulo 6 economía
Capítulo 6 economía
 
Trabajo de Persona , Sociedad y Gestión
Trabajo de Persona , Sociedad y GestiónTrabajo de Persona , Sociedad y Gestión
Trabajo de Persona , Sociedad y Gestión
 
Intro
IntroIntro
Intro
 

Teorema de Rolle y Lagrange en

  • 1. Nombre: Moisés Jorquera Apablaza Profesor: Sergio Calvo
  • 2. •Nosotros empleamos este teorema ,si una función f(x) es continua en el segmento a x b, tiene una derivada f’(x) en cada uno de los puntos interiores de éste, y f(a)=f(b) para su variable independiente existe por lo menos un valor xo donde a<xo<b es tal que f’(xo)=0. •Esto quiere decir que se debe evaluar los extremos, teniendo que ser iguales.
  • 3. Representación Geométrica del Teorema •En palabras sencillas, si una curva regular sale y llega a la misma altura, en algún punto tendrá tangente horizontal, así se dice que se cumple el teorema.
  • 4. F(x) = x(x-2) 0 ≤x0 ≤2, siendo 0=a y 2=b F(x)=x2- 2x Se saca el valor de la f(0)= 0 ------- > El valor de a es 0. Se saca el valor de la f (2)=4-4= 0 -------> El valor de b es 2. Ahora se saca la F´(x) F´(x)= 2x-2
  • 5. Efectuando el reemplazo por la variable que queremos conocer(x0), igualando la f´(x) a 0. Quedando por definitiva, lo siguiente: 2x0-2=0 /2 X0 = 1 ∴ Se cumple el teorema de Rolle, ya que , f(a) = f=b , y el valor de X0, se encuentra en el intervalo comprendido entre el 0 y el 2, se cumplen las condiciones.
  • 6.
  • 7. •Si una función f(x) es continua en el segmento a x b y tiene derivada en cada punto interior de éste, se tiene:
  • 8. La interpretación geométrica del Teorema de Lagrange nos señala ,que existirá un punto donde la tangente es paralela a la secante.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. •Definición: Tomándose en cuenta que x0, A < X0< B, por lo tanto el V. Medio debe ubicarse entre a y b, para que el teorema se cumpla.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18. • Esta regla se emplea para el cálculo de límites indeterminados de la forma 0/0 e ∞/∞. • Definición
  • 19. lím x -> 0 = 0/0 Con L´ Hopital, aplicando la definición lím x -> 0 = 0/0 = f´(x)/ g´(x)= =1
  • 20.
  • 21.
  • 22.
  • 23. •Para calcular los límites de expresiones indeterminadas de la forma 0* hay que transformar los correspondientes productos f1 (x) * f2 (x) en el límite donde x a f1(x)=0 y límite cuando x a f2(x)= . En la fracción f1(x) / 1/f2(x) 0/0 f2(x) / 1/ f1(x) / •Hay dos caminos, nosotros debemos ocupar, el que no haga el trabajo mas complicado.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30. -∞ 0 +∞ F’ (x) - - •Intervalo f´(x) es negativo, es decreciente para esos valores de x A medida que x disminuye, el valor de la f(x), disminuye. •Intervalo f´(x) es positivo, es creciente para esos valores de x A medida que x aumenta, el valorde la f(x), aumenta.
  • 31. x y -3 -0.2 -2 -0.25 -1 -0.33 0 -0.5 1 -1 3 1 4 0.5 5 0.33
  • 32.
  • 33.
  • 34. X Y -5 -0.25 -4 -0.35 Gráfico en la siguiente -3 -1.33 diapositiva -1 -0.5 0 -0.16 1 0 2 0.25 4 0.50 5 0.28 6 0.20 •Siendo -2 y 3, asíntotas
  • 35. •Se nota que la f, se acerca en los puntos restringidos, pero no los “toca”.(-2,3)
  • 36.
  • 37.
  • 38. -∞ 0 +∞ F’ (x) - + La f(x) es decreciente, en La f(x) es creciente, este intervalo en este intervalo •Metodo de f´´(x) sirve para obtener mínimos y máximos relativos. •Si el pto.crítico, reemplazado en la f´´(x) 0; se dice que el pto crítico es un mín. relativo •En caso contrario, si dicho pto.resulta ser negativo, este equivale a un Máximo Relativo
  • 39.
  • 40.
  • 41. X Y -3 181/41 -2 32/17 -1 1 0 0 0.8 ¾ 1 1 2 32/17 3 181/41 4 512/257