• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Viscoelastic Damping: Zener model
 

Viscoelastic Damping: Zener model

on

  • 459 views

Zener model of Viscoelastic Materials

Zener model of Viscoelastic Materials
Can you add complexity?

#WikiCourses
http://wikicourses.wikispaces.com/Topic01+Viscoelastic+Materials

Statistics

Views

Total Views
459
Views on SlideShare
422
Embed Views
37

Actions

Likes
0
Downloads
13
Comments
0

2 Embeds 37

http://wikicourses.wikispaces.com 36
http://www.slideee.com 1

Accessibility

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Viscoelastic Damping: Zener model Viscoelastic Damping: Zener model Presentation Transcript

    • Viscoelastic Damping Zener Model Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Zener Model • The Zener model describes the material as a viscous damper in parallel with an elastic stiffness and both are in series with another stiffness. • The strain may be written as: Viscoelastic Damping Mohammad Tawfik ε=ε s +ε 1 WikiCourses# http://WikiCourses.WikiSpaces.com
    • Stress-Strain Relation • The stress is is given by the relation: • From which we may write: • Or: σ =E s ε s =E p ε1 +C d ε 1 ˙ σ σ ε s = , ε1= Es E p +sC d σ σ ε= + E s E p + sC d ¿σ Viscoelastic Damping Mohammad Tawfik ( E p + sC d + E s E s ( E p + sC d ) ) WikiCourses# http://WikiCourses.WikiSpaces.com
    • Stress-Strain Relation • Giving: E s ( E p +sC d ) ε=( E p +sC d + E s ) σ • Back to time domain: E s E p ε+ E s C d ε =( E p + E s ) σ +C d σ ˙ ˙ Eε +Eβ ε =σ +α σ ˙ ˙ Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Zener Model Characteristics • Creep: – For constant stress, we get: – Giving: Eε +Eβ ε =σ 0 ˙ σ 0 e−t / β ε= − E Es Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Zener Model Characteristics • Relaxation: – For constant strain, we get: – Which gives: Viscoelastic Damping Mohammad Tawfik Eε=σ +α σ ˙ σ =σ 0 + Eε 0 ( 1−e−t /α ) WikiCourses# http://WikiCourses.WikiSpaces.com
    • Zener Model Characteristics • Storage and Loss Factors: σ =σ 0 e ε=ε 0 e – For harmonic stress: – Which drives the strain harmonically: – Giving: Eε o + jωE βε o =σ o + j ωασ o jωt jωt 2 1+ω αβ + jω ( β−α ) 1+ j ωβ σ o= E ε o= E εo 2 2 1+ j ωα 1+ω α Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Zener Model Characteristics ( ) 2 1+ ω αβ jω ( β−α ) σ o= E + εo 2 2 2 2 1+ω α 1+ω α ' σ o= E ( 1+ jη ) ε o Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Frequency Dependent Behavior 2 1.8 1.6 Modulus 1.4 1.2 1 0.8 0.6 E 0.4 u 0.2 0 0 1 2 3 4 Frequency Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com
    • Other Models • Some, more accurate, models were developed to represent the behavior of viscoelastic material • The greatest concern was paid for the modeling in the time domain. • The most famous models are: – Golla-Hughes-McTavish – Augmented Temperature Field – Fractional Derivative Viscoelastic Damping Mohammad Tawfik WikiCourses# http://WikiCourses.WikiSpaces.com