Upcoming SlideShare
Loading in...5
×

# Partial Products Slidecast

• 1,696 views
Uploaded on

• Comment goes here.
Are you sure you want to
Your message goes here
• Quite well made presentation, congratulations!
http://www.bathroomsinkconsoles.net/
http://www.bathroomsinkconsoles.net/category/bathroom-sink-consoles/
Are you sure you want to
Your message goes here
No Downloads

Total Views
1,696
On Slideshare
0
From Embeds
0
Number of Embeds
2

Shares
Downloads
7
Comments
1
Likes
1

No embeds

### Report content

No notes for slide

### Transcript

• 1. Partial Products Multiplication By Mr. Kish
• 2. Pros and Cons
• Pros
• Reinforces the understanding of place value
• Closely related to how a problem would be solved mentally
• More “logical”
• Cons
• Sometimes hard to remember order of steps
• More lines of work
• Seems to take longer
• Not as widely used
• 3. An example of partial products 6 3 5 4 x
• 4. An example of partial products x Make an estimate 6 3 5 4
• 5. An example of partial products x Make an estimate 60 * 50 6 3 5 4
• 6. An example of partial products x Make an estimate 60 * 50 = 3,000 6 3 5 4
• 7. An example of partial products x 6 3 5 4
• 8. An example of partial products 6 3 5 4 x 0 0 6 3 5 4
• 9. An example of partial products x 0 0 6 3 5 4
• 10. An example of partial products x 0 3000 60 * 50 6 3 5 4
• 11. An example of partial products x 0 0 3000 240 60 * 4 6 3 5 4
• 12. An example of partial products x 0 0 3000 240 150 3 * 50 6 3 5 4
• 13. An example of partial products x 0 0 3000 240 150 12 3 * 4 6 3 5 4
• 14. An example of partial products 3000 x 0 0 240 150 12 + 6 3 5 4
• 15. An example of partial products 3000 x 0 0 240 150 12 + 3402 6 3 5 4
• 16. An example of partial products 9 1 6 2 x
• 17. An example of partial products x Make an estimate 9 1 6 2
• 18. An example of partial products x Make an estimate 90 * 60 9 1 6 2
• 19. An example of partial products x Make an estimate 90 * 60 = 5,400 9 1 6 2
• 20. An example of partial products x 9 1 6 2
• 21. An example of partial products x 0 0 9 1 6 2
• 22. An example of partial products x 0 0 9 1 6 2
• 23. An example of partial products x 0 0 5400 90 * 60 9 1 6 2
• 24. An example of partial products x 0 0 5400 180 90 * 2 9 1 6 2
• 25. An example of partial products x 0 0 5400 180 60 1 * 60 9 1 6 2
• 26. An example of partial products x 0 0 5400 180 60 2 1 * 2 9 1 6 2
• 27. An example of partial products x 0 0 5400 180 60 2 + 9 1 6 2
• 28. An example of partial products x 0 0 5400 180 60 2 + 5642 9 1 6 2
• 29. A more complex example 6 4 2 x 3 5 1
• 30. A more complex example 6 4 2 x 1 8 0 0 0 0 3 0 0 0 0 1 2 0 0 0 6 0 0 600 * 300 600 * 50 600 * 1 40 * 300 2 2 5 3 4 2 3 5 1 2 0 0 0 4 0 1 0 0 6 0 0 40 * 50 40 * 1 2 * 300 2 * 50 2 2 * 1