Upcoming SlideShare
×

# Integrated Math 2 Section 9-5

402 views

Published on

Multiply Binomials

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
402
On SlideShare
0
From Embeds
0
Number of Embeds
16
Actions
Shares
0
7
0
Likes
0
Embeds 0
No embeds

No notes for slide

• ### Integrated Math 2 Section 9-5

1. 1. SECTION 9-5 Multiplying Binomials
2. 2. ESSENTIAL QUESTION How do you multiply binomials? Where you’ll see this: Finance, geography, recreation, photography
3. 3. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3)
4. 4. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3)
5. 5. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x
6. 6. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x
7. 7. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x
8. 8. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x
9. 9. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x
10. 10. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x
11. 11. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x −8
12. 12. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
13. 13. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
14. 14. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
15. 15. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x 2 6x + 8x − 8
16. 16. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x 2 6x + 8x − 8
17. 17. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
18. 18. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
19. 19. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
20. 20. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
21. 21. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8
22. 22. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8 2 4x +12x + 9
23. 23. EXPLORE Multiply by hand: 32 X 45 32 x 45
24. 24. EXPLORE Multiply by hand: 32 X 45 32 x 45 0
25. 25. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 0
26. 26. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0
27. 27. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 0
28. 28. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 80
29. 29. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0
30. 30. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0
31. 31. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0 1440
32. 32. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3)
33. 33. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2)
34. 34. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
35. 35. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
36. 36. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) −24
37. 37. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24
38. 38. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 −2w
39. 39. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w
40. 40. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w
41. 41. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w 2 w +10w − 24
42. 42. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) 12w −24 2 w −2w 2 w +10w − 24
43. 43. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2 w +10w − 24
44. 44. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2 w +10w − 24
45. 45. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −3 2 w −2w 2 w +10w − 24
46. 46. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w 2 w +10w − 24
47. 47. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w +a 2 w +10w − 24
48. 48. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 w +10w − 24
49. 49. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 w +10w − 24
50. 50. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 2 w +10w − 24 3a − 8a − 3
51. 51. HOMEWORK
52. 52. HOMEWORK p. 398 #1-48, multiples of 3 “An opinion should be the result of a thought, not a substitute for it.” Jeff Mallett