Integrated Math 2 Section 3-8
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Integrated Math 2 Section 3-8

  • 1,091 views
Uploaded on

Equations with Squares and Square Roots

Equations with Squares and Square Roots

More in: Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
1,091
On Slideshare
1,082
From Embeds
9
Number of Embeds
1

Actions

Shares
Downloads
6
Comments
0
Likes
0

Embeds 9

http://mrlambmath.wikispaces.com 9

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. SECTION 3-8 Equations with Squares and Square Roots
  • 2. ESSENTIAL QUESTIONS • How do you solve problems involving squares? • How do you solve problems involving square roots? • Where you’ll see this: • Physics, safety, engineering, mechanics
  • 3. VOCABULARY 1. Inverse of an Operation:
  • 4. VOCABULARY 1. Inverse of an Operation: The opposite of an operation
  • 5. VOCABULARY 1. Inverse of an Operation: The opposite of an operation Addition and subtraction
  • 6. VOCABULARY 1. Inverse of an Operation: The opposite of an operation Addition and subtraction Multiplication and division
  • 7. QUESTION What is the opposite of squaring?
  • 8. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9
  • 9. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 2 4 x =± 9
  • 10. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 2 4 x =± 9 2 x=± 3
  • 11. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 +225 +225 2 4 x =± 9 2 x=± 3
  • 12. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 +225 +225 2 2 4 x = 225 x =± 9 2 x=± 3
  • 13. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 +225 +225 2 2 4 x = 225 x =± 9 2 x = ± 225 2 x=± 3
  • 14. EXAMPLE 1 Solve each equation. Check the solution. 2 4 a. x = 2 b. x − 225 = 0 9 +225 +225 2 2 4 x = 225 x =± 9 2 x = ± 225 2 x = ±15 x=± 3
  • 15. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v
  • 16. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1
  • 17. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 3 x =2
  • 18. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 3 x =2 3 3
  • 19. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 3 x =2 3 3 2 x= 3
  • 20. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 3 x =2 3 3 2 x= 3 2 2  2 ( x) =   3
  • 21. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 3 x =2 3 3 2 x= 3 2 2  2 4 ( x) =   3 x= 9
  • 22. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 2 ± 24 = v 3 x =2 3 3 2 x= 3 2 2  2 4 ( x) =   3 x= 9
  • 23. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 2 ± 24 = v 3 x =2 3 3 v = ± 24 2 x= 3 2 2  2 4 ( x) =   3 x= 9
  • 24. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 2 ± 24 = v 3 x =2 3 3 v = ± 24 2 x= or 3 2 2  2 4 ( x) =   3 x= 9
  • 25. EXAMPLE 1 Solve each equation. Check the solution. 2 c. 3 x +1= 3 d. 24 = v −1 −1 2 ± 24 = v 3 x =2 3 3 v = ± 24 2 x= or 3 2  2 2 4 v ≈ ±4.898979486 ( x) =   3 x= 9
  • 26. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3
  • 27. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 2 2  2 ( c) =   3
  • 28. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 2 2  2 ( c) =   3 4 c= 9
  • 29. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 ( c) =   3 4 c= 9
  • 30. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 7w =14 ( c) =   3 4 c= 9
  • 31. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 7w =14 ( c) =   3 2 ( 7w ) =14 2 4 c= 9
  • 32. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 7w =14 ( c) =   3 2 ( 7w ) =14 2 4 c= 7w =196 9
  • 33. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 7w =14 ( c) =   3 2 ( 7w ) =14 2 4 c= 7w =196 9 7 7
  • 34. EXAMPLE 1 Solve each equation. Check the solution. 2 e. c = f. 7w −10 = 4 3 +10 +10 2 2  2 7w =14 ( c) =   3 2 ( 7w ) =14 2 4 c= 7w =196 9 7 7 w = 28
  • 35. EXAMPLE 2 The velocity v of a satellite moving in a circular orbit near the surface of Earth is given by the formula v = gr , where g represents the force of gravity and r represents the radius of Earth. Given that g = 9.8 m/sec2 and v = 7.91X103 m/sec, determine the radius of Earth to the nearest meter.
  • 36. EXAMPLE 2 The velocity v of a satellite moving in a circular orbit near the surface of Earth is given by the formula v = gr , where g represents the force of gravity and r represents the radius of Earth. Given that g = 9.8 m/sec2 and v = 7.91X103 m/sec, determine the radius of Earth to the nearest meter. v = gr
  • 37. EXAMPLE 2 The velocity v of a satellite moving in a circular orbit near the surface of Earth is given by the formula v = gr , where g represents the force of gravity and r represents the radius of Earth. Given that g = 9.8 m/sec2 and v = 7.91X103 m/sec, determine the radius of Earth to the nearest meter. v = gr 3 7.91×10 = 9.8r
  • 38. EXAMPLE 2 3 7.91×10 = 9.8r
  • 39. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r
  • 40. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r 2 2 7910 = ( 9.8r )
  • 41. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r 2 2 7910 = ( 9.8r ) 62568100 = 9.8r
  • 42. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r 2 2 7910 = ( 9.8r ) 62568100 = 9.8r 9.8 9.8
  • 43. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r 2 2 7910 = ( 9.8r ) 62568100 = 9.8r 9.8 9.8 r = 6384500
  • 44. EXAMPLE 2 3 7.91×10 = 9.8r 7910 = 9.8r 2 2 7910 = ( 9.8r ) 62568100 = 9.8r 9.8 9.8 r = 6384500 The radius of Earth is about 6384500 meters.
  • 45. HOMEWORK
  • 46. HOMEWORK p. 138 #1-51 odd “If fifty million people say a foolish thing, it is still a foolish thing.” - Anatole France