Int2 section 9 5

331 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
331
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
3
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

















































  • Int2 section 9 5

    1. 1. SECTION 9-5 Multiplying Binomials
    2. 2. ESSENTIAL QUESTION How do you multiply binomials? Where you’ll see this: Finance, geography, recreation, photography
    3. 3. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3)
    4. 4. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3)
    5. 5. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x
    6. 6. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x
    7. 7. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x
    8. 8. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x
    9. 9. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x
    10. 10. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x
    11. 11. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x −8
    12. 12. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
    13. 13. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
    14. 14. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 6x + 8x − 8
    15. 15. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x 2 6x + 8x − 8
    16. 16. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x 2 6x + 8x − 8
    17. 17. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
    18. 18. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
    19. 19. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
    20. 20. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
    21. 21. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8
    22. 22. EXAMPLE 1 Simplify. 2 a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 2 6x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8 2 4x +12x + 9
    23. 23. EXPLORE Multiply by hand: 32 X 45 32 x 45
    24. 24. EXPLORE Multiply by hand: 32 X 45 32 x 45 0
    25. 25. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 0
    26. 26. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0
    27. 27. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 0
    28. 28. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 80
    29. 29. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0
    30. 30. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0
    31. 31. EXPLORE Multiply by hand: 32 X 45 1 32 x 45 16 0 128 0 1440
    32. 32. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3)
    33. 33. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2)
    34. 34. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
    35. 35. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
    36. 36. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) −24
    37. 37. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24
    38. 38. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 −2w
    39. 39. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w
    40. 40. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w
    41. 41. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w 2 w +10w − 24
    42. 42. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) 12w −24 2 w −2w 2 w +10w − 24
    43. 43. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2 w +10w − 24
    44. 44. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2 w +10w − 24
    45. 45. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −3 2 w −2w 2 w +10w − 24
    46. 46. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w 2 w +10w − 24
    47. 47. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w +a 2 w +10w − 24
    48. 48. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 w +10w − 24
    49. 49. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 w +10w − 24
    50. 50. EXAMPLE 2 Simplify. a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 2 w +10w − 24 3a − 8a − 3
    51. 51. HOMEWORK
    52. 52. HOMEWORK p. 398 #1-48, multiples of 3 “An opinion should be the result of a thought, not a substitute for it.” Jeff Mallett

    ×