Your SlideShare is downloading. ×
0
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Int Math 2 Section 9-5 1011
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Int Math 2 Section 9-5 1011

293

Published on

Multiply Binomials

Multiply Binomials

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
293
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • \n
  • Transcript

    • 1. SECTION 9-5Multiplying Binomials
    • 2. ESSENTIAL QUESTIONHow do you multiply binomials?Where you’ll see this: Finance, geography, recreation, photography
    • 3. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3)
    • 4. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3)
    • 5. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x
    • 6. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x
    • 7. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x
    • 8. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x
    • 9. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x
    • 10. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x
    • 11. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x −8
    • 12. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
    • 13. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
    • 14. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
    • 15. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x 2 6x + 8x − 8
    • 16. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x 2 6x + 8x − 8
    • 17. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
    • 18. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
    • 19. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
    • 20. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
    • 21. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8
    • 22. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8 2 4x +12x + 9
    • 23. EXPLOREMultiply by hand: 32 X 45 32 x 45
    • 24. EXPLOREMultiply by hand: 32 X 45 32 x 45 0
    • 25. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 0
    • 26. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0
    • 27. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 0
    • 28. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 80
    • 29. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0
    • 30. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0
    • 31. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0 1440
    • 32. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3)
    • 33. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2)
    • 34. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
    • 35. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
    • 36. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) −24
    • 37. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24
    • 38. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 −2w
    • 39. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2w −2w
    • 40. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2w −2w
    • 41. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w 2w +10w − 24
    • 42. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) 12w −24 2 w −2w 2w +10w − 24
    • 43. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2w +10w − 24
    • 44. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2w +10w − 24
    • 45. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −3 2 w −2w 2w +10w − 24
    • 46. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w 2w +10w − 24
    • 47. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w +a 2w +10w − 24
    • 48. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2w +10w − 24
    • 49. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2w +10w − 24
    • 50. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 2w +10w − 24 3a − 8a − 3
    • 51. PROBLEM SET
    • 52. PROBLEM SET p. 398 #1-48, multiples of 3“An opinion should be the result of a thought, not a substitute for it.” Jeff Mallett

    ×