0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Int Math 2 Section 9-5 1011

293

Published on

Multiply Binomials

Multiply Binomials

Published in: Education
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
293
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
0
0
Likes
0
Embeds 0
No embeds

No notes for slide
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• \n
• ### Transcript

• 1. SECTION 9-5Multiplying Binomials
• 2. ESSENTIAL QUESTIONHow do you multiply binomials?Where you’ll see this: Finance, geography, recreation, photography
• 3. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3)
• 4. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3)
• 5. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x
• 6. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x
• 7. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x
• 8. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x
• 9. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x
• 10. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x
• 11. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x −8
• 12. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
• 13. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
• 14. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 6x + 8x − 8
• 15. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x 2 6x + 8x − 8
• 16. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x 2 6x + 8x − 8
• 17. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
• 18. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x 2 6x + 8x − 8
• 19. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
• 20. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x 2 6x + 8x − 8
• 21. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8
• 22. EXAMPLE 1 Simplify. 2a. (2x + 4)(3x − 2) b. (2x + 3) (2x + 3)(2x + 3) 26x −4x +12x −8 2 4x +6x +6x +9 2 6x + 8x − 8 2 4x +12x + 9
• 23. EXPLOREMultiply by hand: 32 X 45 32 x 45
• 24. EXPLOREMultiply by hand: 32 X 45 32 x 45 0
• 25. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 0
• 26. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0
• 27. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 0
• 28. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 80
• 29. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0
• 30. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0
• 31. EXPLOREMultiply by hand: 32 X 45 1 32 x 45 16 0 128 0 1440
• 32. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3)
• 33. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2)
• 34. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
• 35. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12)
• 36. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) −24
• 37. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24
• 38. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 −2w
• 39. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2w −2w
• 40. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2w −2w
• 41. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (w +12) 12w −24 2 w −2w 2w +10w − 24
• 42. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) 12w −24 2 w −2w 2w +10w − 24
• 43. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2w +10w − 24
• 44. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 2 w −2w 2w +10w − 24
• 45. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −3 2 w −2w 2w +10w − 24
• 46. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w 2w +10w − 24
• 47. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 w −2w +a 2w +10w − 24
• 48. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2w +10w − 24
• 49. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2w +10w − 24
• 50. EXAMPLE 2 Simplify.a. (w − 2)(w +12) b. (3a +1)(a − 3) (w − 2) (3a +1) (w +12) (a − 3) 12w −24 −9a −3 2 2 w −2w 3a +a 2 2w +10w − 24 3a − 8a − 3
• 51. PROBLEM SET
• 52. PROBLEM SET p. 398 #1-48, multiples of 3“An opinion should be the result of a thought, not a substitute for it.” Jeff Mallett