• Like
holmes
Upcoming SlideShare
Loading in...5
×

holmes

  • 292 views
Uploaded on

 

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
292
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
2
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • Subset in Burlington, segmented scale 10
  • Same subset in Burlington, segmented scale 40
  • Same subset in Burlington, segmented scale 100
  • Same subset in Burlington, segmented scale 200
  • Aerial photograph 45cm resolution 2005 MassGIS 4 band, eastern Burlington
  • Same aerial, segmented scale 40
  • Land-cover classification

Transcript

  • 1. Albert Decatur | Dan Runfola | Nick Giner | Rahul RakshitAdvisors: Prof. Colin Polsky | Prof. Robert Gilmore Pontius, Jr
  • 2. Research QuestionsHow can we produce a very high resolution land-cover dataset for a large suburban landscape?How are lawns of varying extents spatiallydistributed across the landscape?How can we use virtual globes to assess theaccuracy of the dataset? HOLMES http://sites.google.com/site/heromapmanual/ 2 1
  • 3. Overall Project Goals Create a land-cover data set for 26 towns in NE Massachusetts Use virtual field work to assess the accuracy of the data Produce land-cover summaries at various geographies (e.g. parcels or census blocks) Develop a tutorial for object-oriented classification of high- resolution imagery Streamline data production by developing automated data processing modelsHOLMES http://sites.google.com/site/heromapmanual/ 3 2
  • 4. Study Area WorcesterHOLMES http://sites.google.com/site/heromapmanual/ 4 3
  • 5. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 5 5
  • 6. HERO Mapping Project http://sites.google.com/site/heromapmanual/ 5
  • 7. Object-oriented classification methodology ‘05 Aerial Photos Woburn, MAHERO Mapping Project http://sites.google.com/site/heromapmanual/ 6 6
  • 8. Aerial Object-oriented classification methodology Training Segmentation Sites Classification Edge Aggregation Post Manual Matching and Merging Processing Editing FinalThematic ValidationLayers: Product Impervious•Impervious Sand•Water Water•Wetlands Wetlands Bare Soil Coniferous Deciduous Fine Green/ GrassHERO Mapping Project http://sites.google.com/site/heromapmanual/ 6 6
  • 9. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 7 7
  • 10. Object-oriented classification methodologyHOLMES http://sites.google.com/site/heromapmanual/ 8
  • 11. 10HOLMES http://sites.google.com/site/heromapmanual/ 9
  • 12. 40 40HOLMES http://sites.google.com/site/heromapmanual/ 10
  • 13. 100HOLMES http://sites.google.com/site/heromapmanual/ 11
  • 14. 200HOLMES http://sites.google.com/site/heromapmanual/ 12
  • 15. HOLMES http://sites.google.com/site/heromapmanual/ 13 12
  • 16. HOLMES http://sites.google.com/site/heromapmanual/ 14
  • 17. HOLMES http://sites.google.com/site/heromapmanual/ 15
  • 18. OutHOLMES http://sites.google.com/site/heromapmanual/ 16
  • 19. OutHOLMES http://sites.google.com/site/heromapmanual/ 17
  • 20. OutHOLMES http://sites.google.com/site/heromapmanual/ 18
  • 21. OutHOLMES http://sites.google.com/site/heromapmanual/ 19
  • 22. Out Impervious Water Wetlands Bare Soil Coniferous Deciduous Fine Green/ GrassHOLMES http://sites.google.com/site/heromapmanual/ 19
  • 23. Data Analysis HOLMES
  • 24. Percentage Land-cover by TownData Analysis Woburn Ipswich Sand Grass 1% 15% Bare Soil 26% Imperviou Deciduou s s 7% 32% Wetland Coniferou 7% Water s 4% 8% HOLMES HOLMES http://sites.google.com/site/heromapmanual/ 21 20
  • 25. Percentage Land-cover by Census Block: #44010 All Parcels within Census BlockData Analysis Census Block as a Whole census block parcels selected HOLMES http://sites.google.com/site/heromapmanual/ 22 9
  • 26. Data Analysis Percentage Land-cover by Parcel: 7 Roman Rd: #710309 9 Roman Rd: #710308 Impervious 11% Impervious 20% Grass Coniferous Grass 44% 24% 48% Coniferous 24% Deciduous Deciduous 17% 12% Images courtesy of Google street view HOLMES http://sites.google.com/site/heromapmanual/ 23 21
  • 27. AutomationStreamline data preparationand processingReduce manual steps as wellas likelihood of errorSave time and increaseproductivity HOLMES http://sites.google.com/site/heromapmanual/ 24 22
  • 28. Analysis Model Data Processing ModelsHOLMES http://sites.google.com/site/heromapmanual/ 27 25
  • 29. Percentage of fine green Per Parcel, Burlington in 2005 (For parcels with fine green category) 900 750Number of Parcels 600 450 300 150 0 0 10 20 30 40 50 60 70 80 90 100 Percentage of fine green HOLMES http://sites.google.com/site/heromapmanual/ 29 27
  • 30. Validation by virtual fieldwork
  • 31. Google Earth and Microsoft Virtual EarthBetter Science : Stratified truly randomsampling that is temporally matchingVery IntuitiveSaves time and moneyHOLMES http://sites.google.com/site/heromapmanual/ 30 30
  • 32. HOLMES http://sites.google.com/site/heromapmanual/ 31 31
  • 33. HOLMES http://sites.google.com/site/heromapmanual/ 32 32
  • 34. HOLMES http://sites.google.com/site/heromapmanual/ 33 33
  • 35. HOLMES http://sites.google.com/site/heromapmanual/ 34 34
  • 36. HOLMES http://sites.google.com/site/heromapmanual/ 35 35
  • 37. HOLMES http://sites.google.com/site/heromapmanual/ 37 37
  • 38. HOLMES http://sites.google.com/site/heromapmanual/ 38 38
  • 39. HOLMES http://sites.google.com/site/heromapmanual/ 39 39
  • 40. HOLMES http://sites.google.com/site/heromapmanual/ 40 40
  • 41. Virtual Fieldwork Land-cover Bare Fine Grand Soil Coniferous Deciduous Green Impervious Water Wetlands Total BareDefiniens Land-cover Soil 34 1 1 1 3 40 Coniferous 37 2 1 40 Deciduous 3 55 2 60 Fine Green 1 1 57 1 60 Impervious 44 44 Water 40 40 Wetlands 40 40 Grand Total 38 39 58 59 50 40 40 324 HOLMES http://sites.google.com/site/heromapmanual/ 45 41
  • 42. Online Tutorial
  • 43. Google Analytics Visits
  • 44. Acknowledgements We sincerely thank: •Prof. Colin Polsky •Prof. Robert Gilmore Pontius Jr. •National Science Foundation •BES (Baltimore) LTER: Jarlath ONeil-Dunne, Weiqi Zhou, & Morgan Grove •MassGIS •Clark University HERO programThis material is based upon work supported by the National Science Foundation under Grant No. 0709685Any opinions, findings, & conclusions or recommendations expressed in this material are those of the author(s) & do not necessarily reflect the views of the National Science Foundation. HOLMES http://sites.google.com/site/heromapmanual/ 46 13