Your SlideShare is downloading. ×
0
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

SWOC - Semantic Wonder Cloud: Exploratory Search in DBpedia - SWIM 2010

1,429

Published on

Inspired by the Google Wonder Wheel, we present Semantic Wonder Cloud (SWOC): a tool that helps users in knowledge exploration within the DBpedia dataset by adopting a hybrid approach. We describe …

Inspired by the Google Wonder Wheel, we present Semantic Wonder Cloud (SWOC): a tool that helps users in knowledge exploration within the DBpedia dataset by adopting a hybrid approach. We describe both the architecture and the user interface. The system exploits not only pure semantic connections in the underlying RDF graph but it mixes the meaning of such information with external non-semantic knowledge sources, such as web search engines and tagging systems. Semantic Wonder Cloud allows the user to explore the relations between resources of knowledge domain via a simple and intuitive graphical interface.
The system is available at http://sisinflab.poliba.it/semantic-wonder-cloud/index/

SWIM 2010 - 2nd International Workshop on Semantic Web Information Management

The paper won the "Best Workshop Paper Award" at 10th International Conference on Web Engineering, ICWE 2010, held in Vienna, July 05-09, 2010.

Presented by Roberto Mirizzi (http://sisinflab.poliba.it/mirizzi -
roberto.mirizzi -at- gmail.com)

Vienna (Austria), July 05, 2010

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,429
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
19
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Semantic Wonder Cloud: exploratory search in DBpedia<br />Roberto Mirizzi1, Azzurra Ragone1,2, <br />Tommaso Di Noia1, Eugenio Di Sciascio1<br />1Politecnico di Bari<br />Via Orabona, 4<br />70125 Bari (ITALY)<br />2Universityof Trento<br />Via Sommarive, 14<br />38100 Trento (ITALY)<br />
  • 2. Outline<br /><ul><li>Exploratory search
  • 3. SWOC (Semantic Wonder Cloud): the interface
  • 4. Background technologies
  • 5. SWOC: how it works
  • 6. Ranking in Linked Data (DBpedia)
  • 7. Conclusion and Future work</li></li></ul><li>WhatisExploratorySearch?<br />[Gary Marchionini. ExploratorySearch: FromFindingtounderstanding. Communicationsof the ACM, 49(4): 41-46, 2006]<br />
  • 8. Inspiration: Google Wonder Wheel<br />ExploratorySearch in Google…<br />…nice, butthereis no “semantics” in it. <br />You can notdiscovernewknowledgeexploiting the meaningof a term (keyword/tag/query)<br />
  • 9. SWOC: SemanticWonderCloud<br />http://sisinflab.poliba.it/semantic-wonder-cloud/index/<br />
  • 10. Whatisbehind SWOC? (I)<br />
  • 11. Whatisbehind SWOC? (II)<br />
  • 12. What is behind SWOC? (III)<br />…<br />…<br />Knowledge_representation<br />Data_management<br />Internet_architecture<br />…<br />XML-based_standards<br />Distribute_computing_architecture<br />Semantic_Web<br />Web_services<br />Semantic_Web_Services<br />OWL-S<br />Triplestores<br />Folksonomy<br />…<br />Web_service_specifications<br />Internet_search<br />Enterprise_application_integration<br />Microformtas<br />…<br />…<br />Legend<br />skos:subject<br />skos:broader<br />Category<br />Article<br />
  • 13. The functionalarchitecture<br />Back-end<br />Google<br />Bing<br />SPARQL<br />Ext. Info Sources<br />Yahoo!<br />Graph Explorer<br />Context Analyzer<br />Delicious<br />Ranker<br />DBpedia Lookup Service<br />Storage<br />XML documents<br />SQL2XML Converter<br />Graph Generator<br />Resource Selector<br />Interface<br />
  • 14. DBpedia-Ranker: ranking<br />Graph-based ranking<br />?r1<br />?r2<br />isSimilar<br />hasValue<br />v<br />Externalsources-based ranking<br />
  • 15. DBpedia-Ranker: contextanalysis<br />The samesimilaritymeasureisused in the contextanalysis<br />C<br />?c1<br />Algorithm:<br />If(v>THRESHOLD) then<br /> r1belongsto the context;<br />add r1to the graphexplorationqueue<br />Else<br /> r1doesnotbelongto the context;<br />exclude r1fromgraphexploration<br />EndIf<br />?c2<br />belongsTo<br />?r1<br />?c…<br />?cN<br />hasValue<br />Example:<br />C = {ProgrammingLanguages, Databases, Software}<br />DoesDennis Ritchiebelongsto the givencontext?<br />v<br />
  • 16. Evaluation (I)<br />http://sisinflab.poliba.it/evaluation<br />
  • 17. Evaluation (II)<br />http://sisinflab.poliba.it/evaluation/data<br />
  • 18. Conclusion<br /><ul><li>SWOC: a tool for exploratory search
  • 19. Ranking algorithm for RDF graphs</li></ul>Future work<br /><ul><li>Integrate resultsfromsearchengines in SWOC
  • 20. Test ouralgorithmswithdifferentdomains
  • 21. Extract more fine grainedcontexts
  • 22. Enrich the extractedcontextusingalsorelevantproperties
  • 23. Integrateourapproachwithrealexistingsystems
  • 24. Use the core system toautomaticallyextractrelevanttags (concepts) from a document (or from a collectionofdocuments) exploitingtoolsfornamedentitiesextraction</li></li></ul><li>Q&A<br />Semantic Wonder Cloud: exploratory search in DBpedia (SWIM 2010)<br />Thanksforyourattention!<br />Seeyoulater at the demo sessionand on Fridaywith…<br />Ranking the Linked Data: the case of DBpedia (ICWE 2010)<br />Roberto Mirizzi, AzzurraRagone, Tommaso Di Noia, Eugenio Di Sciascio<br />mirizzi@deemail.poliba.it, ragone@disi.unitn.it, {ragone,dinoia,disciascio}@poliba.it<br />

×