Your SlideShare is downloading. ×
Grafeno
Grafeno
Grafeno
Grafeno
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Grafeno

2,045

Published on

Published in: Travel
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
2,045
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
60
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. GRAFENO: INDICE:  Introduccion  Descripción  Propiedades  Aplicación a la electrónica Introducción El grafeno, procede de grafito + eno, es una estructura laminar plana de un átomo de grosor, compuesta por átomos de carbono densamente empaquetados en una red cristalina en forma de panal de abeja mediante enlaces covalentes que se formarían a partir de la superposición de los híbridos sp² de los carbonos enlazados. Cada uno de estos carbonos tiene cuatro electrones de valencia en el estado hibridado, tres de esos electrones se alojarán en los híbridos sp2, formando el esqueleto de enlaces covalentes simples de la estructura y el electrón sobrante, se alojará en un orbital atómico de tipo p perpendicular al plano de los híbridos. La solapación lateral de dichos orbitales es lo que daría lugar a la formación de orbitales de tipo π. Algunas de estas combinaciones, entre otras, darían lugar a un gigantesco orbital molecular des localizado entre todos los átomos de carbono que constituyen la capa de grafeno Estructura cristalina del grafito en la que se observan las interacciones entre las distintas capas de anillos aromáticos condensados. En el grafeno, la longitud de los enlaces carbono-carbono es de aproximadamente 1,42 Å. Es el componente estructural básico de todos los demás elementos grafíticos incluyendo el grafito, los nanotubos de carbono y los fulerenos. Esta estructura también se puede considerar como una molécula aromática extremadamente extensa en las dos direcciones del espacio, es decir, sería el caso límite de una familia de moléculas planas de hidrocarburos aromáticos policíclicos llamada grafenos. El Premio Nobel de Física de 2010 fue otorgado a Andre Geim y Konstantin Novoselov por sus revolucionarios descubrimientos sobre el material bidimensional grafeno.
  • 2. Descripción El grafeno perfecto se constituye exclusivamente de celdas hexagonales; las celdas pentagonales o heptagonales son defectos. Ante la presencia de una celda pentagonal aislada, el plano se arruga en forma cónica; la presencia de 12 pentágonos crearía un fulereno. De la misma forma, la inserción de un heptágono le daría forma de silla. Los nanotubos de carbono de pared única son cilindros de grafeno Estructura cristalina del grafito en la que se observan las interacciones entre las distintas capas de anillos aromáticos condensados. Propiedades Entre las propiedades más destacadas de este material se incluyen:  Alta conductividad térmica y eléctrica.  Alta elasticidad y dureza.  Resistencia (200 veces mayor que la del acero).  El grafeno puede reaccionar químicamente con otras sustancias para formar compuestos con diferentes propiedades, lo que dota a este material de gran potencial de desarrollo.  Soporta la radiación ionizante.  Es muy ligero, como la fibra de carbono, pero más flexible.  Menor efecto Joule, se calienta menos al conducir los electrones.  Consume menos electricidad para una misma tarea que el silicio.
  • 3. Otras propiedades interesantes desde el punto de vista teórico son las siguientes:  Los electrones que se trasladan sobre el grafeno, se comportan como cuasipartículas sin masa. Los llamados fermiones de Dirac. Dichos fermiones se mueven a una velocidad constante independientemente de su energía (como ocurre con la luz), en este caso a unos 106 m/s. La importancia del grafeno, en este aspecto, consiste en estudiar experimentalmente este comportamiento que había sido predicho teóricamente hace más de 50 años.  El grafeno presenta un efecto llamado efecto Hall cuántico, por el cual la conductividad perpendicular a la corriente toma valores discretos, o cuantizados, permitiendo esto medirla con una precisión increíble. La cuantización implica que la conductividad del grafeno nunca puede ser cero (su valor mínimo depende de la constante de Planck y la carga del electrón).  Debido a las propiedades anteriores, los electrones del grafeno pueden moverse libremente por toda la lámina y no quedarse aislados en zonas de las que no pueden salir (efecto llamado localización de Anderson, y que es un problema para sistemas bidimensionales con impurezas).  Es casi completamente transparente y tan denso que ni siquiera el átomo de helio, cuyos átomos son los más pequeños que existen (sin combinar en estado gaseoso) puede atravesarlo. Aplicación en electrónica El grafeno tiene propiedades ideales para ser utilizado como componente en circuitos integrados. El grafeno tiene una alta movilidad de portadores, así como un bajo nivel de ruido, lo que permite que sea utilizado como canal en transistores de efecto de campo (FET). La dificultad de utilizar grafeno estriba en la producción del mismo material, en el substrato adecuado. Los investigadores están buscando métodos como la transferencia de hojas de grafeno desde el grafito (exfoliación) o el crecimiento epitaxial (como la grafitización térmica de la superficie del carburo de silicio - SiC). En diciembre de 2008, IBM anunció que habían fabricado y caracterizado transistores operando a frecuencias de 26GHz. En febrero del 2010, la misma IBM anunció que la velocidad de estos nuevos transistores alcanzaba los 100 GHz. Vista rotatoria de un cristal de grafito(2 capas de grafeno)

×