• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Digitla Communication pulse shaping filter
 

Digitla Communication pulse shaping filter

on

  • 2,059 views

 

Statistics

Views

Total Views
2,059
Views on SlideShare
2,059
Embed Views
0

Actions

Likes
0
Downloads
90
Comments
0

0 Embeds 0

No embeds

Accessibility

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Digitla Communication pulse shaping filter Digitla Communication pulse shaping filter Document Transcript

    • Digital Communication Systems Homework # 6 Muhammad Irfan AnjumMatlab code is given in the Appendix.BPSK Modulation ±1Sampling frequency fs= 2000 HzSampling interval T=1/fsSymbol duration Ts=20/fsProblem # 1 Matlab script to design root raised cosine filter p(kTs) with roll-off factor 0.5 and convolution oftwo root raised cosine pulse is shown in fig. 1.The graphs shown in Fig.1 are obtained using oversampling. It is clear from Fig.1 (b) that convolution oftwo root raised cosine pulses is raise cosine pulse.Problem # 2 Fig. 2 shows the time and frequency plots of transmitted BPSK symbols before and after passingthrough pulse shaping filter shown in Fig.1.Problem # 3 Fig. 3 shows the time and frequency plots of transmitted BPSK symbols before and after passingthrough filter h(t), where h(t)=c(t)*p(t).
    • Fig.1
    • Fig. 2
    • Fig. 3Problem # 4 Fig. 4 shows the BER graphs of BPSK and 4-QAM modulations schemes in case of MLSD. It isclear from the figure that BPSK performs better than 4-QAM in ISI channel.
    • Fig. 4Appendix:%% HomeWork#6, Digital Communication Systems...clcclearclose allroll_off_factor=0.5; % Rolloff factor.fs=2000; % Sampling rrequency.Ts=1/fs; % Sampling rate.T=20/fs; % Symbol durationM=10^5; % Number of symbolsinterval=-T/2:Ts:T/2;SNR=0:3:15;%% Problem #1Index=1;for t=interval if t==0 p(Index)=1-roll_off_factor+4*roll_off_factor/pi; elseif t== abs(Ts/(4*roll_off_factor))
    • p(Index)=roll_off_factor/sqrt(2) * ((1+2/pi)*sin(pi/(4*roll_off_factor)) + (1-2/pi)*cos(pi/(4*roll_off_factor))); else N= sin(pi*t * (1-roll_off_factor)/Ts) + 4*roll_off_factor*t *cos(pi*t*(1+roll_off_factor)/Ts)/Ts; D= pi*t * (1-(4*roll_off_factor*t/Ts)^2)/Ts; p(Index)=N/D; end Index=Index+1;endfiguresubplot(211)plot(interval,p);xlabel(time-->); ylabel(Amplitude); title(Impulse response of Rootraised cosine filter); grid onp_kTs=conv(p,p);hold oninterval=-T:Ts:T;subplot(212)plot(interval,p_kTs);xlabel(time-->); ylabel(Amplitude); title(Impulse response of Raisedcosine filter); grid onaxis ([-5*Ts 5*Ts -2 10])%% Problem # 2m=randsrc(M,1,[-1 1;0.5 0.5]); % BPSK Symbols 1,-1oversampled_data=upsample(m,T/Ts);figure;subplot(311);stem(oversampled_data);axis ([200 300 -2 2])xlabel(n); ylabel(Amplitude); title(oversampled data);grid onTx=conv(oversampled_data,p);subplot(312)plot(Tx);axis ([200 300 -2 2])xlabel(time); ylabel(Amplitude); title(Transmitted data);grid onsubplot(313);spec_Tx=fft(Tx,length(Tx));plot(abs(spec_Tx));xlabel(f); ylabel(Amplitude); title(Spectrum of transmitted data);gridon%% Problem #3m=randsrc(M,1,[-1 1;0.5 0.5]); % BPSK Symbols 1,-1c=upsample([1 0.5 -0.1],T/Ts);h=conv(c,p);oversampled_data=upsample(m,T/Ts);figure;subplot(311);stem(oversampled_data);axis ([200 300 -2 2])xlabel(n); ylabel(Amplitude); title(oversampled data);grid onTx=conv(oversampled_data,h);
    • subplot(312)plot(Tx);axis ([200 300 -2 2])xlabel(time); ylabel(Amplitude); title(Transmitted data);grid onsubplot(313);spec_Tx=fft(Tx,length(Tx));plot(abs(spec_Tx));xlabel(f); ylabel(Amplitude); title(Spectrum of transmitted data);gridon%% Problem #4 BPSK[x y]=size(Tx);j=1;m=(m+1)/2;for i=SNR sgma=sqrt(10^(-i/10)); noise=random(Normal,0,sgma,x,y); Rx=noise+Tx; r_k=conv(Rx,fliplr(h)); r=r_k(80:end-79); rx=sign(downsample(r,T/Ts)); rx=(rx+1)/2; [N,ber]=biterr(m,rx); e_bpsk(j)=ber; j=j+1;end% Problem #4 4-QAMrl=1/sqrt(2)*randsrc(M,1,[-1 1;0.5 0.5]); mg=1/sqrt(2)*randsrc(M,1,[-1 1;0.50.5]); % BPSK Symbols 1,-1m=rl+mg*1j; % 4-QAM symbolsoversampled_data=upsample(m,T/Ts);Tx=conv(oversampled_data,h);[x y]=size(Tx); j=1;rl=(sqrt(2)*rl+1)/2; mg=(sqrt(2)*mg+1)/2;for i=SNR sgma=sqrt(10^(-i/10)); noise=random(Normal,0,sgma,x,y)+random(Normal,0,sgma,x,y)*1j; Rx=noise+Tx; r_k=conv(Rx,fliplr(h)); r=r_k(80:end-79); rxr=sign(downsample(real(r),T/Ts)); rxm=sign(downsample(imag(r),T/Ts)); rxr=(rxr+1)/2; rxm=(rxm+1)/2; [N,ber1]=biterr(rl,rxr); [N,ber2]=biterr(mg,rxm); e_4qam(j)=(ber1+ber2)/2; j=j+1;endfigure;semilogy(SNR,e_bpsk,-o);hold on;semilogy(SNR,e_4qam,-*);legend(BPSK, 4-QAM); xlabel(SNR in dB); ylabel(BER);title(BER comparison of BPSK and 4-QAM in MLSD detector); grid on