• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
. Poly ac.dvi
 

. Poly ac.dvi

on

  • 301 views

 

Statistics

Views

Total Views
301
Views on SlideShare
301
Embed Views
0

Actions

Likes
0
Downloads
13
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    . Poly ac.dvi . Poly ac.dvi Document Transcript

    • Ontologies et alignement d’ontologies : notes de cours Adrien Coulet (inspir´ des cours de R. Dieng, J. Euzenat, A. G´ mez-P´ rez, J. Lieber et A. Napoli) e o e derni` re version : 19/11/07 e (version pr´ liminaire) eTable des mati` res e1 Introduction 12 Les ontologies 2 2.1 D´ finitions . . . . . . . . . . . . e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.2 Origine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.3 Les diff´ rents types d’ontologies e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 2.4 Le partage d’ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Les m´ thodes de construction e 34 Les languages de repr´ sentation e 3 4.1 Les logiques de descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 4.2 OWL : Web Ontology Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 4.3 Les m´ canismes de raisonnement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 65 Les applications des ontologies 6 5.1 Le Web S´ mantique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 6 5.2 La classification automatique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 5.3 L’int´ gration de donn´ es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e e 66 L’alignement d’ontologies 7 6.1 D´ finitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 7 6.2 Techniques de bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 6.3 Les strat´ gies d’alignement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . e 87 Pour aller plus loin 81 Introduction Ce cours est une br` ve pr´ sentation des ontologies et notamment des ontologies OWL, format recommend´ e e epar le W3C pour le Web S´ mantique. Nous evoquerons les principales applications des ontologies, ainsi que e ´l’alignement d’ontologies comme enjeu principal au d´ veloppement de ces applications. e 1
    • 2 Les ontologies2.1 D´ finitions eEn philosophie l’ontologie est une branche de la m´ taphysique qui s’int´ resse a l’´ tude des propri´ t´ s de l’ˆ tre e e ` e ee e (au sens de ce qui existe).En informatique une ontologie est une repr´ sentation de connaissances. Une d´ finition plus explicite est : e e “Une ontologie est une specification formelle et explicite d’une conceptualisation partag´ e” [4]. e – Sp´ cification formelle : compr´ hensible par une machine, e e – Sp´ cification explicite : les concepts, relations, fonctions, contraintes, axiomes sont explicitement d´ finis, e e – Partag´ e : les connaissances repr´ sent´ es sont partag´ es par une communaut´ , e e e e e – Conceptualisation : mod` le abstrait d’une partie du monde que l’on veut repr´ senter. e ePlus formellement une ontologie O est un syst` me de symboles consistant en : e – Un ensemble Sc de concepts, et un ensemble Sr de relation binaires (D,R), entre domaines et co-domaines (qui sont deux sous-ensembles de Sc ) N.B. : Un concept repr´ sente un ensemble (fini ou infini). Ainsi le concept de chat noir repr´ sente (intui- e e tivement) l’ensemble de tous les chats noirs. – Une hierarchie H, o` les concepts et relations sont hi´ rarchiquement reli´ s par la relation de subsomption, u e e i.e. une relation d’ordre partiel not´ ⊑ , o` C1 ⊑ C2 signifie que C1 est un sous-concept de C2 , et r1 ⊑ r2 e u signifie que r1 est une sous-relation de r2 . – Un ensemble d’axiomes A qui introduisent les concepts et les relations.2.2 Origine L’´ mergence de la notion d’ontologie en informatique r´ sulte en partie des travaux de recherches en intelli- e egence artificielle. Comment formaliser des connaissances pour qu’elles puissent etre interpr´ t´ es par les machines ˆ eeest une probl´ matique centrale de ce domaine qui a motiv´ de nombreux travaux sur les repr´ sentations par objets. e e eL’utilisation conjointe des syst` mes a bases d’objets et de logiques a men´ a la constitution d’ontologies formelles. e ` e`Depuis 2001, l’´ mulation autour du Web S´ mantique participe au d´ veloppement de standards pour les ontologies e e eet a la multiplication de leur utilisation. `2.3 Les diff´ rents types d’ontologies e – Lightweight Ontologies vs. Heavyweight Ontologies. Voir Figure 1. F IG . 1 – Classification de Lassila et McGuinness [6]. – Task Ontology vs Domain Ontology 2
    • – Representation ⇒ Generic ⇒ Domain ⇒ Application Ontologies Equilibre entre utilisabilit´ et r´ utilisabilit´ : lors de la construction ou du choix d’une ontologie, il est im- e e e portant d’avoir a l’esprit que plus le niveau d’abstraction choisi est proche de l’application moins l’ontologie ` est r´ utilisable, mais plus elle est utilisable. e2.4 Le partage d’ontologies Une caract´ ristique principales des ontologies est de devoir etre disponible, pour pouvoir (1) etre partag´ es par e ˆ ˆ eune communaut´ et (2) etre accessibles aux machines. e ˆ Selon leur d´ finition, les ontologies doivent correspondre a une conceptualisation paratag´ e par une commu- e ` enaut´ . Pour cela, il existe des biblioth` ques d’ontologies qui permettent le partage d’ontologies et servent de e esupport a un affinement communautaire des conceptualisations de mani` re collaborative. Par exemple, les ontolo- ` egies biom´ dicales sont partag´ es sur le site OBO Foundry [8] qui regroupe des ontologies concernant diff´ rents e e edomaines de la biologie (comme Gene Ontology pour les fonctions des g` nes, Disease Ontology pour les mala- edies) afin de permettre leur raffinement et leur validation. Il existe par ailleurs, des outils comme Swoogle [16]ou Ontology Lookup Service [9] qui sont des moteurs de recherche qui indexent les concepts inclus dans lesontologies disponibles pour favoriser la r´ utilisation des ontologies existantes. e3 Les m´ thodes de construction e Diff´ rentes m´ thodes de construction d’ontologies ont et´ propos´ es (par exemple : METHONTOLOGY, e e ´e eNeOn). Elles s’inspirent des m´ thodes de d´ veloppement logiciel (voir Figure 2) [2]. Avec notamment : e e – Une phase de conceptualisation men´ e en etroite collaboration avec des experts du domain repr´ sent´ . La e ´ e e conceptualisation peut se faire a l’aide des m´ thodes de mod´ lisation comme l’UML ou les Ontology Design ` e e Patterns. – Une phase d’´ valuation. e – Un cycle pour perp´ tuellement am´ liorer les ontologies. e e F IG . 2 – Cycle de vie d’une ontologie [2].4 Les languages de repr´ sentation e4.1 Les logiques de descriptions les logiques de descriptions (LD) sont des langages de repr´ sentation de connaissances classiques dont le eformalisme s’appuye sur les notions de concepts, de rˆ le et d’instance. o 3
    • Les LD sont apparent´ es, en particulier, aux formalismes de repr´ sentation des connaissances par objets. La e es´ mantique d’une telle logique s’exprime grˆ ce a des notions ensemblistes. e a ` Ainsi, etant donn´ une interpr´ tation I, un concept C s’interpr` te comme un ensemble I (C), un rˆ le r s’in- ´ e e e oterpr` te comme une relation binaire e I (r) et une instance a comme un individu I (a). Les op´ rations ∩, ∪, etc., sur les ensembles sont repr´ sent´ s par les connecteurs ⊓, ⊔, etc., sur les concepts. e e ePar exemple, etant donn´ deux concepts C et D et une interpr´ tation I, on a (C ⊓ D)I () =I (C) ∩I (D). ´ e e Il existe plusieurs LD dont les diff´ rences sont de poss´ der plus ou moins de constructeurs et de type d’axiomes. e eNous pr´ sentons dans le Tableau 1 les principaux constructeurs des LD.La logique qui est contenue dans le langage eOWL (OWL DL pour etre exact) est SHOIN (D). ˆ ⊤ et ⊥ sont deux concepts particuliers repr´ sentant respectivement le concept le plus g´ n´ ral et le concept e e einsatisfiable (qui est aussi le concept le plus sp´ cifique). e Par exemple, le concept “ tarte aux pommes et aux noix dont toutes les pˆ tes sont feuillet´ es ou bris´ es (elle a e epeut ne pas avoir de pˆ te, en avoir 1, 2, etc.) ” peut etre repr´ sent´ sous la forme suivante en LD : a ˆ e e Tarte ⊓ ∃ingr´dient.Pomme ⊓ ∃ingr´dient.Noix ⊓ ∀p^te.(Feuillet´e ⊔ Bris´e) e e a e e ` Ce concept s’appuie sur la base de connaissances du Tableau ??. A titre d’exemples, l’axiome [Ax1] indiquequ’une Tarte est une Pr´parationCulinaire, l’axiome [Ax7], que Pomme et Noix sont des concepts incompa- etibles (il n’existe pas d’objet qui soit a la fois une pomme et une noix) et l’axiome [Ax8], qu’une TarteSucr´e ` eest une Tarte ayant au moins un ingr´dient qui soit un ProduitSucr´. e e Une base de connaissances BC en LD est g´ n´ ralement compos´ e de deux parties : une TBox et une ABox. e e eLa TBox, ou base terminologique, est un ensemble d’axiomes terminologiques, qui peuvent etre de la forme C ⊑ D ˆou de la forme C ≡ D, C et D etant deux concepts. La ABox est un ensemble d’assertions qui peuvent etre de la ´ ˆforme C(a) ou r(a, b) o` a et b sont deux instances, C est un concept et r est un rˆ le. Le premier type d’assertion u ocorrespond a une instanciation de concept, le second, a une instanciation de rˆ le. ` ` o4.2 OWL : Web Ontology Language OWL est une recommendation du W3C qui a et´ adopt´ par un grand nombre d’utilisateur comme le principal ´e elangage de repr´ sentation de connaissances [15]. e F IG . 3 – Le “Semantic Web Layer Cake”. OWL est bas´ sur RDF lui mˆ me bas´ sur XML. Le language RDF permet de repr´ senter des triplets <Sujet, e e e ePr´ dicat, Objet>. Le language OWL contient, en plus, une s´ ntique standard qui facilite les possiblit´ s de raison- e e enement. Le Tableau 1 pr´ sente la correspondance ente les op´ rateurs de LD et les mots cl´ s de OWL. e e eN.B. : Alors qu’en LD on parle de concept, rˆ le et instance, en OWL, on parle respectivement de classe, propri´ t´ o eeet individu. 4
    • nom syntaxe LD syntaxe abstraite s´ mantique e Nom de classe C C (URI) CI ⊆ ∆I Top, Thing ⊤ owl:Thing ⊤I = ∆I Bottom, Nothing ⊥ owl:Nothing ⊥I = ∅ Intersection C⊓D intersectionOf(C D) (C ⊓ D)I = CI ∩ DI Union C⊔D unionOf(C D) (C ⊔ D)I = CI ∪ DI N´ gation e ¬C complementOf(C) (¬C)I = ∆I CI Enum´ ration e {a, b . . .} oneOf(a b . . . ) {a, b . . .}I = {aI , bI . . .} Quantificateur ∃p.C restriction(p (∃p.C)I = {x|∃y, (x, y) ∈ pI existentiel someValuesFrom(C)) et y ∈ CI } Quantificateur ∀p.C restriction(p (∀p.C)I = {x|si ∀y, (x, y) ∈ pI universel allValuesFrom(C)) alors y ∈ CI } Restriction a` ∋ p.a restriction(p (∋ p.a)I = {x|(x, aI ) ∈ pI } une valeur hasValue(a)) =np restriction(p (= n p)I = {x| card{y|(x, y) ∈ pI } = n} Restriction cardinality(C)) non qualifi´ e e np restriction(p ( n p)I = {x| card{y|(x, y) ∈ pI } n} de cardinalit´ e minCardinality(C)) np restriction(p ( n p)I = {x| card{y|(x, y) ∈ pI } n} maxCardinality(C)) Quantificateur ∃d.T restriction(d (∃d.T)I = {x|∃y, (x, y) ∈ dI existentiel someValuesFrom(T )) ∧ y ∈ TD } Quantificateur ∀d.T restriction(d (∀d.T)I = {x|∀y, (x, y) ∈ dI universel allValuesFrom(T )) → y ∈ TD } Restriction a ` ∋ d.a restriction(d (∋ d.a)I = {x|(x, aD ) ∈ dI } une valeur hasValue(a)) =nd restriction(d (= n d)I = {x| card{y|(x, y) ∈ dI } = n} Restriction cardinality(T )) non qualifi´ e e nd restriction(d ( n d)I = {x| card{y|(x, y) ∈ dI } n} de cardinalit´ e minCardinality(T )) nd restriction(d ( n d)I = {x| card{y|(x, y) ∈ dI } n} maxCardinality(T ))TAB . 1 – Constructeurs de classes OWL et leur correspondances en LD. C et D sont des classes, T est un type dedonn´ e, n est un nombre, a et b sont des individus, p une propri´ t´ d’objet (ObjectProperty) et d une propri´ t´ de e ee eedonn´ es (DatatypeProperty). e (Ax1) Tarte ⊑ Pr´parationCulinaire e (Ax7) Pomme ⊓ Noix ⊑⊥ (Ax2) Dessert ⊑ Pr´parationCulinaire e (Ax8) TarteSucr´e ≡ Tarte⊓∃ingr´dient.ProduitSucr´e e e e (Ax3) ProduitSucr´ ⊑ Produit e (Ax9) TarteSal´e ≡ Tarte ⊓ ¬TarteSucr´e e e (Ax4) Fruit ⊑ ProduitSucr´ e (Ax10) TarteSucr´e ⊑ Dessert e (Ax5) Pomme ⊑ Fruit (Ax6) Noix ⊑ Fruit (a)TBox (A1) (Tarte ⊓ ∃ingr´dient.Pomme)(tarte1) e (A3) ingr´dient(tarte1,noix1) e (A2) Noix(noix1) (b)ABox TAB . 2 – Une base de connaissance ecrite en LD. ´ 5
    • Les deux principaux outils pour construire des ontologies OWL sont :Prot´ g´ -OWL : D´ velopp´ en Java par l’Universit´ de Stanford. Disponible gratuitement [12]. e e e e eSwoop : D´ velopp´ en Java par le MINDSWAP (Maryland Information and Network Dynamics Lab Semantic e e Web Agents Project). Disponible gratuitement [17]. D´ mo : construction d’une ontologie avec Prot´ g´ qui correspond a la BC de l’exemple. e e e `4.3 Les m´ canismes de raisonnement e les principaux type de raisonnement – V´ rification de la coh´ rence (consistency checking) e e – Classification de concepts – Classification d’instances D´ mo : les mechanismes de raisonnement avec Prot´ g´ . e e eRemarque importante : Les LD, et par cons´ quent les ontologies ecrites en OWL, s’appuient sur l’hypoth` se du e ´ emonde ouvert. Cela signifie que si une relation entre deux concepts (ou un concept et une instance) n’est pasconnue/d´ duite par la base de connaissance, ce n’est pas pour autant que celle ci n’existe pas. Prenons un exemple. eSupposons qu’on ait l’ABox suivante : estParentDe(anakine, luke) estParentDe(padm´, leia) eet une TBox vide. On cherche a savoir si Anakine est un des parents de Leila en faisant le test ` BC estParentDe(anakine, leila). La r´ ponse a ce test est faux : il existe des mod` les I de BC pour lesquels e ` e(anakine I , leiaI ) ∈ estParentDe I . En revanche, il existe des mod` les I pour lesquels e(anakineI , leiaI ) ∈ estParentDeI . Autrement dit, une r´ ponse n´ gative a ce test de subsomption indique e e `simplement que le syst` me ignore si Anakine est le p` re de Leia. e e5 Les applications des ontologies5.1 Le Web S´ mantique e Le Web S´ mantique est souvent pr´ sent´ comme une “vision” de Tim Berners Lee. Le Web S´ mantique est e e e eune extension du Web actuel pour lequel le contenu du Web peut non seulement etre exprim´ en langage naturel, ˆ emais egalement en un format qui peut etre lu et utilis´ par des agents logiciels pour permettre de trouver, partager ´ ˆ eet int´ grer de l’information plus facilement. ePar exemple, trouver des pages Web qui parlent d’un certain M. Fish qui travaille dans une entreprise qui construitdes tanks.5.2 La classification automatique La mise en oeuvre de m´ canismes de raisonnement sur des bases de connaissances peut tirer parti de la es´ mantique disponible dans une ontologies pour classifier de mani` re automatique des instances en fonction de e eleur propri´ t´ s. eeExemple de classification de proteines en familles et sous-familles en fonction de leur domaines.5.3 L’int´ gration de donn´ es e e L’int´ gration de donn´ es est une probl` matique majeur en informatique. Les ontologies sont des outils parti- e e eculi´ rment interessants pour reconcilier les repr´ sentations h´ t´ rog` nes des donn´ es. Comme elles proposent une e e ee e es´ mantique en plus des donn´ es (des donn´ es aux connaissances) il existe des m´ canismes qui proposent d’iden- e e e etifier les choses identiques.Exemples. 6
    • 6 L’alignement d’ontologies Il est crucial de disposer de m´ thodes pour articuler les diff´ rentes ontologies ensembles car : e e1) Il n’existe pas une ontologie unique de l’univers. Il existe des ontologies pour des petites parties de l’univers.2) Il n’existe pas d’ontologie universelle pour un domaine. Il doit pouvoir exister plusieurs visions d’un mˆ me edomaine.6.1 D´ finitions eLa correspondance Soit deux ontologies O et O′ , une correspondance M entre O et O′ est un quintuplet : < id, e, e′ , R, n > tel que : – id est un identifiant unique de l’´ lement de mapping, e – e et e ′ sont des entit´ s de O et O ′ (des concepts ou des rˆ les par exemple), e o – R est une relation (par exemple d’´ quivalence (≡) ; de g´ n´ ralisation ( ⊒ ) ; de sp´ cialisation (⊑) ; de e e e e disjonction (⊥)), – n est une mesure de confiance contenue dans une structure math´ matique (typiquement dans l’intervalle e [0,1]).L’alignement Soit deux ontologies O et O′ , l’alignement A entre O et O′ est : – Un ensemble de correspondances entre O et O′ , – Associ´ es a une multiplicit´ : 1-1, 1-*, etc. e ` e – Associ´ es a des meta-donn´ es additionelles (une m´ thode, une date, des propri´ t´ s, etc.) e ` e e eeLe processus d’alignement. Il peut etre vu comme une fonction f qui, a partir de deux ontologies O et O′ , un ˆ ` alignement de d´ part A, un ensemble p de param` tres et un ensemble e de sources d’informations externes, e e donne un alignement A′ entre ces deux ontologies : A’ = f (O, O′ , A, p, e)6.2 Techniques de bases Nous distinguons les techniques dont l’objectif est d’´ tablir un alignement entre deux ontologies en fonction ede deux choses : – est-ce que les elements compar´ s sont consid´ r´ s comme deux elements isol´ s ou comme deux parties d’une ´ e ee ´ e structure plus grande ? – quelle est le type d’information qui va nous permettre de d´ terminer la similarit´ entre les elements : la e e ´ syntaxe, une source d’information externe, ou la s´ mantique ? eEn fonction de ces deux informations la classification suivante peut etre propos´ e : ˆ e e ´Techniques fond´ es sur les elements isol´ s e – Techniques syntaxiques – Techniques fond´ es sur les chaˆnes de caract` res e ı e – Techniques fond´ es sur le langage e – Techniques a base de contraintes ` – Techniques utilisant des sources externes – des ressources linguistiques : lexiques, th´ saurus e – r´ utilisation d’alignements e – d’ontologies : upper-level ou domain-specific ontologiesTechniques fond´ es sur la structure e – Techniques syntaxiques – Techniques fond´ es sur l’analyse de donn´ es et les statistiques : fr´ quence de distribution e e e – Techniques fond´ es sur les graphes : recherche d’homomorphismes, de chemins e – Techniques fond´ es sur des taxonomies e – Techniques utilisant des sources externes 7
    • – Techniques fond´ es sur des librairies de structures e – Techniques s´ mantiques e – Techniques fond´ es sur le mod` le des donn´ es : m´ canismes de raisonement en LD e e e e6.3 Les strat´ gies d’alignement e En pratique, aucune des techniques de bases pr´ sent´ es ci-dessus n’est appliqu´ e seule. Elles sont combin´ es e e e ecomme des briques de bases pour d´ finir une strat´ gie d’alignement fonction de l’objectif. e eL’int´ gration de diff´ rentes correspondances entre de mˆ mes entit´ es ainsi que la combinaison des correspon- e e e edances pour constituer l’alignement global n´ cessite de mettre en œuvre des m´ thodes particuli` res. e e e Aucune strat´ gie d’alignement n’est appliqu´ e de facon purement automatique. l’expert du domaine doit tou- e e ¸jours valider les correspondances. Ceci est d’autant plus crucial lorsque des donn´ es sont critiques comme c’est le ecas dans le domaine biom´ dical. eIl existe de nombreux travaux et outils proposant des processus diff´ rents pour l’alignement [3]. ePar exemple, Prompt [11] se pr´ sente sous la forme d’un plug-in de Prot´ g´ qui prends en entr´ e 2 ontologies et e e e epropose a l’utilisateur de valider les correspondances d’un alignement automatiquement g´ n´ r´ . ` e eeD´ mo de Prompt. e7 Pour aller plus loin Jetez un coup d’oeil a la bibliographie. `Bibliographie[1] Baader (F.), Calvanese (D.), McGuinness (D.), Nardi (D.) et Patel-Schneider (P.). – The description logic handbook. Cambridge, UK, Cambridge University Press, 2003.[2] Dieng (R.), Olivier Corby (O.), Giboin (A.) et Ribi` re (M.). – Methods and Tools for Corporate Knowledge e Management. Rapport de recherche nRR 3314, INRIA, 1997.[3] Euzenat (J.) et Shvaiko (P.). – Ontology matching. Heidelberg, DE, Springer-Verlag, 2007.[4] Gruber (T.). – Towards Principles for the Design of Ontologies Used for Knowledge Sharing. Formal Ontology in Conceptual Analysis and Knowledge Representation, Kluwer Academic Publishers, 1993.[5] Doan (A.) et Halevy (A.). – Semantic Integration Research in the Database Community : A Brief Survey . AI Magazine, Special Issue on Semantic Integration, 2005.[6] Lassila (O.) et McGuinness (D.). – The Role of Frame-Based Representation on the Semantic Web. Electronic Transactions on Artificial Intelligence 6(5) :1403-2031, 2001.[7] Napoli (A.). – Une introduction aux logiques de descriptions. Rapport de recherche nRR 3314, INRIA, 1997.[8] OBO Foundry – [http ://www.obofoundry.org].[9] Ontology Lookup Service – [http ://www.ebi.ac.uk/ontology-lookup/].[10] Ontology Matching – [http ://www.ontologymatching.org/index.html].[11] Prompt – [http ://protege.stanford.edu/plugins/prompt/prompt.html].[12] Prot´ g´ – [http ://protege.stanford.edu/]. e e[13] Knowledge Web – [http ://knowledgeweb.semanticweb.org/].[14] European Association for Semantic Web Education – [http ://ease.semanticweb.org/].[15] OWL : Recommendation du W3C en francais – [http ://www.yoyodesign.org/doc/w3c/owl-ref-20040210/]. ¸[16] Swoogle Semantic Web Search Engine – [http ://swoogle.umbc.edu/index.php].[17] Swoop – [http ://code.google.com/p/swoop/]. 8