An example Hadoop Install
Upcoming SlideShare
Loading in...5
×
 

An example Hadoop Install

on

  • 1,597 views

A practical example of how Hadoop can be installed

A practical example of how Hadoop can be installed
and a cluster created using low cost hardware.

Statistics

Views

Total Views
1,597
Slideshare-icon Views on SlideShare
1,597
Embed Views
0

Actions

Likes
1
Downloads
121
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as OpenOffice

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    An example Hadoop Install An example Hadoop Install Presentation Transcript

    • Apache Hadoop Install Example ● Using Ubuntu 12.04 ● Java 1.6 ● Hadoop 1.2.0 ● Static DNS ● 3 Machine Cluster www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 1 ● Install Ubuntu Linux 12.04 on each machine ● Assign a hostname and static IP address to each machine ● Names used here – hc1nn ( hadoop cluster 1 name node ) – hc1r1m1 ( hadoop cluster 1 rack 1 machine 1 ) – hc1r1m2 ( hadoop cluster 1 rack 1 machine 2 ) ● Install ssh daemon on each server ● Install vsftpd ( ftp ) deamon on each server ● Update /etc/host with all hostnames on each server www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 2 ● Generate ssh keys for each server under hadoop user ● Copy keys to all server's hadoop account ● Install java 1.6 ( we used openjdk ) ● Obtain the Hadoop software from – hadoop.apache.org – Unpack Hadoop software to /usr/local ● Now consider cluster architecture www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 3 ● Start will three single installs – For Hadoop ● Then cluster the – Hadoop machines www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 4 ● Ensure auto shh – From name node (hc1nn) to both data nodes – From each machine to itself ● Create symbolic link – Named hadoop – Pointing to /usr/local/hadoop-1.2.0 ● Set up Bash .bashrc on each machine hadoop user set – HADOOP_HOME – JAVA_HOME www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 5 ● Create Hadoop tmp dir on all servers sudo mkdir -p /app/hadoop/tmp sudo chown hadoop:hadoop /app/hadoop/tmp sudo chmod 750 /app/hadoop/tmp ● Set Up conf/core-site.xml – ( on all servers ) www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 5 <property> <name>hadoop.tmp.dir</name> <value>/app/hadoop/tmp</value> <description>A base for other temporary directories.</description> </property> <property> <name>fs.default.name</name> <value>hdfs://localhost:54310</value> <description>The name of the default file system. A URI whose scheme and authority determine the FileSystem implementation. The uri's scheme determines the config property (fs.SCHEME.impl) naming the FileSystem implementation class. The uri's authority is used to determine the host, port, etc. for a filesystem.</description> </property> www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 6 ● Set Up conf/mapred-site.xml – ( on all servers ) <property> <name>mapred.job.tracker</name> <value>localhost:54311</value> <description>The host and port that the MapReduce job tracker runs at. If "local", then jobs are run in-process as a single map and reduce task. </description> </property> www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 7 ● Set Up conf/hdfs-site.xml – ( on all servers ) <property> <name>dfs.replication</name> <value>1</value> <description>Default block replication. The actual number of replications can be specified when the file is created. The default is used if replication is not specified in create time. </description> </property> www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 8 ● Format the Hadoop file system ( on all servers ) – hadoop namenode -format – Dont do this on a running HDFS you will lose all data !! ● Now start Hadoop ( on all servers ) – $HADOOP_HOME/bin/start-all.sh ● Check Hadoop is running with – sudo netstat -plten | grep java – you should see ports like 54310 and 54311 being used. ● All Good ? Stop Hadoop on all servers – $HADOOP_HOME/bin/stop-all.sh www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 9 ● Now set up the cluster – do on all servers ● Set $HADOOP_HOME/conf/masters file to contain – hc1nn ● Set $HADOOP_HOME/conf/slaves file to contain – hc1r1m1 – hc1r1m2 – hc1nn ● We will be using the name node as a data node as well www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 10 on all machines ● Change conf/core-site.xml on all machines – fs.default.name = hdfs://hc1nn:54310 ● Change conf/mapred-site.xml – mapred.job.tracker = hc1nn:54311 ● Change conf/hdfs-site.xml – dfs.replication = 3 www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 11 ● Now reformat the HDFS on hc1nn – hadoop namenode -format ● On name node start HDFS – $HADOOP_HOME/bin/start-dfs.sh ● On name node start Map Reduce – $HADOOP_HOME/bin/start-mapred.sh www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 12 ● Run a test Map Reduce job – I have data in /tmp/gutenberg ● Load Data into HDFS hadoop dfs -copyFromLocal /tmp/gutenberg /usr/hadoop/gutenberg ● List Data in HDFS hadoop dfs -ls /usr/hadoop/gutenberg Found 18 items -rw-r--r-- 3 hadoop supergroup 674389 2013-07-30 19:31 /usr/hadoop/gutenberg/pg20417.txt -rw-r--r-- 3 hadoop supergroup 674389 2013-07-30 19:31 /usr/hadoop/gutenberg/pg20417.txt1 ............... -rw-r--r-- 3 hadoop supergroup 834980 2013-07-30 19:31 /usr/hadoop/gutenberg/pg5000.txt4 -rw-r--r-- 3 hadoop supergroup 834980 2013-07-30 19:31 /usr/hadoop/gutenberg/pg5000.txt5 www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 13 ● Run the Map Reduce job cd $HADOOP_HOME hadoop jar hadoop*examples*.jar wordcount /usr/hduser/gutenberg /usr/hduser/gutenberg-output ● Check the output 13/07/30 19:34:13 INFO input.FileInputFormat: Total input paths to process : 18 13/07/30 19:34:13 INFO util.NativeCodeLoader: Loaded the native-hadoop library 13/07/30 19:34:14 INFO mapred.JobClient: Running job: job_201307301931_0001 13/07/30 19:34:15 INFO mapred.JobClient: map 0% reduce 0% 13/07/30 19:34:26 INFO mapred.JobClient: map 11% reduce 0% 13/07/30 19:34:34 INFO mapred.JobClient: map 16% reduce 0% 13/07/30 19:34:35 INFO mapred.JobClient: map 22% reduce 0% 13/07/30 19:34:42 INFO mapred.JobClient: map 33% reduce 0% 13/07/30 19:34:43 INFO mapred.JobClient: map 33% reduce 7% 13/07/30 19:34:48 INFO mapred.JobClient: map 44% reduce 7% 13/07/30 19:34:52 INFO mapred.JobClient: map 44% reduce 14% 13/07/30 19:34:54 INFO mapred.JobClient: map 55% reduce 14% 13/07/30 19:35:01 INFO mapred.JobClient: map 66% reduce 14% 13/07/30 19:35:02 INFO mapred.JobClient: map 66% reduce 18% 13/07/30 19:35:06 INFO mapred.JobClient: map 72% reduce 18% 13/07/30 19:35:07 INFO mapred.JobClient: map 77% reduce 18% 13/07/30 19:35:08 INFO mapred.JobClient: map 77% reduce 25% 13/07/30 19:35:12 INFO mapred.JobClient: map 88% reduce 25% www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 13 13/07/30 19:35:17 INFO mapred.JobClient: map 88% reduce 29% 13/07/30 19:35:18 INFO mapred.JobClient: map 100% reduce 29% 13/07/30 19:35:23 INFO mapred.JobClient: map 100% reduce 33% 13/07/30 19:35:27 INFO mapred.JobClient: map 100% reduce 100% 13/07/30 19:35:28 INFO mapred.JobClient: Job complete: job_201307301931_0001 13/07/30 19:35:28 INFO mapred.JobClient: Counters: 29 13/07/30 19:35:28 INFO mapred.JobClient: Job Counters 13/07/30 19:35:28 INFO mapred.JobClient: Launched reduce tasks=1 13/07/30 19:35:28 INFO mapred.JobClient: SLOTS_MILLIS_MAPS=119572 13/07/30 19:35:28 INFO mapred.JobClient: Total time spent by all reduces waiting after reserving slots (ms)=0 13/07/30 19:35:28 INFO mapred.JobClient: Total time spent by all maps waiting after reserving slots (ms)=0 13/07/30 19:35:28 INFO mapred.JobClient: Launched map tasks=18 13/07/30 19:35:28 INFO mapred.JobClient: Data-local map tasks=18 13/07/30 19:35:28 INFO mapred.JobClient: SLOTS_MILLIS_REDUCES=61226 13/07/30 19:35:28 INFO mapred.JobClient: File Output Format Counters 13/07/30 19:35:28 INFO mapred.JobClient: Bytes Written=725257 13/07/30 19:35:28 INFO mapred.JobClient: FileSystemCounters 13/07/30 19:35:28 INFO mapred.JobClient: FILE_BYTES_READ=6977160 13/07/30 19:35:28 INFO mapred.JobClient: HDFS_BYTES_READ=17600721 13/07/30 19:35:28 INFO mapred.JobClient: FILE_BYTES_WRITTEN=14994585 13/07/30 19:35:28 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=725257 13/07/30 19:35:28 INFO mapred.JobClient: File Input Format Counters 13/07/30 19:35:28 INFO mapred.JobClient: Bytes Read=17598630 13/07/30 19:35:28 INFO mapred.JobClient: Map-Reduce Framework www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 14 ● Check the job output hadoop dfs -ls /usr/hadoop/gutenberg-output Found 3 items -rw-r--r-- 3 hadoop supergroup 0 2013-07-30 19:35 /usr/hadoop/gutenberg-output/_SUCCESS drwxr-xr-x - hadoop supergroup 0 2013-07-30 19:34 /usr/hadoop/gutenberg-output/_logs -rw-r--r-- 3 hadoop supergroup 725257 2013-07-30 19:35 /usr/hadoop/gutenberg-output/part-r-00000 ● Now get results out of HDFS hadoop dfs -cat /usr/hadoop/gutenberg-output/part-r-00000 > /tmp/hrun/cluster_run.txt head -10 /tmp/hrun/cluster_run.txt "(Lo)cra" 6 "1490 6 "1498," 6 "35" 6 "40," 6 "A 12 "AS-IS". 6 "A_ 6 "Absoluti 6 "Alack! 6 www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Install Step 15 ● Congratulations – you now have – A working HDFS cluster – With three data nodes – One name node – Tested via a Map Reduce job ● Detailed install instructions available from our site shop www.semtech-solutions.co.nz info@semtech-solutions.co.nz
    • Contact Us ● Feel free to contact us at – www.semtech-solutions.co.nz – info@semtech-solutions.co.nz ● We offer IT project consultancy ● We are happy to hear about your problems ● You can just pay for those hours that you need ● To solve your problems