• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Introduction to FEM
 

Introduction to FEM

on

  • 834 views

 

Statistics

Views

Total Views
834
Views on SlideShare
413
Embed Views
421

Actions

Likes
0
Downloads
58
Comments
0

1 Embed 421

http://online.mondragon.edu 421

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Introduction to FEM Introduction to FEM Presentation Transcript

    • INTRODUCTION TO FINITE ELEMENT METHOD (FEM)
    • 1. INTRODUCTION ENGINEERING DEPARTMENT: To develop new products and/or manufacturing processes Product calculation: - Component dimensioning - Design verification - Material selection Preliminary design: concept design INDUSTRIALISATION: - Development of manufacturing Process calculation: - Process parameters drawings - Manufacturing process definition - Development of manufacturing tools - Production - Tooling design 2
    • 1. INTRODUCTION: CALCULATION METHODS - Analytic method: - Consists on the use of analytic equation to represent the behaviour of a physical problem (As exercises solved by hand in previous chapters or other subjects, heat transfer, material resistance, dynamics, vibrations,…) - Advantages: relatively fast to be solved - Limitations: Hard to represent complex phenomena in real components, not always applicable. 3
    • 1. INTRODUCTION: CALCULATION METHODS - Numeric methods (Finite Element Methods FEM) - To divide a complex problem into many simple problems (elements) - Problem solution by numeric methods (Newton-Raphson) by using iterations and increments. - Advantages: Capability to solve complex problems. - Limitations: Time expensive resolution method, the use of computers is required. 4
    • 1. INTRODUCTION: FORMULATION TYPES - Implicit: - Tries to obtain the structural equilibrium for each time increment. - More sophisticate algorithms higher time increments (FASTER). - High precision - Convergence problems when solving non-linear phenomena: hard variations in boundary condition, material behaviour, loads, contacts,… - Explicit: - Does not need iterations, just time increments (Does not try to get the exact solution) - No convergence problems - Utilizes constant time increments - High calculation time - Recommendable to solve non-linear problems. 5
    • 1. INTRODUCTION: APLICATIONS Solid mechanics: - Structural linear calculations (linear static, linear dynamics) IMPLICIT - Plasticity range calculation (no-linear quasi-static or dynamics) EXPLICIT Fluid mechanics: - Linear calculation (wind tunnel example) IMPLICIT - Non-linear calculations (atmospheric phenomena, turbulence, wind,...) EXPLICIT Thermodynamics: (linear problems-IMPLICIT) Multiphysics: thermo mechanic, thermo fluidic, fluid structure interaction… 6
    • 1. INTRODUCTION: APLICATIONS Solid mechanics: Structural static calculation Design vs. FEM Set-up IMPLICIT Aluminium sheet bulge-test 7
    • 1. INTRODUCTION: APLICATIONS Solid mechanics: eigenvalues Trunk door IMPLIT First mode17Hz Solid mechanics: Forming processes Punching EXPLICIT 8
    • 1. INTRODUCTION: APLICATIONS Solid mechanics: Forming processes 9
    • 1. INTRODUCTION: APLICATIONS Solid mechanics: Machining process Vc=300 m.min-1 Vc≥600 m.min-1 EXPLICIT 10
    • 1. INTRODUCTION: APLICATIONS Fluid mechanics: linear and non-linear examples Hurricane simulation Air flow simulation F1 IMPLICIT EXPLICIT 11
    • 1. INTRODUCTION: APLICATIONS Thermodynamics: Turbine heat transfer simulation IMPLICIT Tube and die temperature pattern simulation IMPLICIT 12
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - Definition of a finite element Geometrical definition (element shape): - Composed by nodes Physic definition (element type): - Degrees of freedom (DOF) - Analytic formulation of the element (mechanical field resolution, thermal fields,…) z 6 Degrees of Freedom (DOF) u v w θx θy θz θz u x θx w θy v y u: Linear displacement in X v: Linear displacement in y w: Linear displacement in z θx: Rotation with respect X θy : Rotation with respect Y θz : Rotation with respect Z 13
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - Element types:      Interpolation order: linear (1st order) y quadratic (2nd order) Linear interpolation v2 v 1 v1 v1 Nodal displacement vector of a first * θ1 δ= v order beam element in 2D de 2 Quadratic interpolation x V(x)=mx+b v3 v2 x V(x)=ax2+bx+c θ2 14
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - Mechanical field calculation: Motion differential equation . .. [M]{δ} + [C]{δ}+[k]{δ} ={Fext} [M]: Mass matrix [C]: Damping matrix [k]: Stiffness matrix - Mechanical field: STATIC Acceleration = 0 Velocity = 0 . .. [M]{δ} + [C]{δ}+[k]{δ} ={Fext} {δ}: Displacement vector . {δ}: Velocity vector .. {δ}: Acceleration vector {Fext}: External load vector [k]{δ} ={Fext} 5 unknowns and 5 equations 15
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - Stress field calculation through nodal displacement. Strain through local displacement INTERPOLATION  displacement at any point of the structure  δ1     . { δ }e = [ N 1 , N 2 ,...., N n ]    .   δn  Generalised Hooke’s law  Stress calculation through local strain (1 − ν)  ν σx   σ   ν  y  σz  E    0  = τ xy  (1 − 2 ⋅ ν) ⋅ (1 + ν)   0 τ yz      τ zx     0  ν (1 − ν) ν ν 0 0 0 0 (1 − 2ν) 2 0 0 ν (1 − ν) 0 0 0 0 0 0 0 0 0 (1 − 2ν) 2 0  ε 0  x   ε  0  y   ε  0  z     γxy  0  γyz    (1 − 2ν) γzx     2  0       εx       εy       εz      =  γ xy         γ yz       γ zx           ∂ ∂x 0 0 ∂ ∂y 0 0 ∂ ∂y ∂ ∂x 0 ∂ ∂z ∂ ∂z 0 0     0     ∂  u ∂z     . v 0   w     ∂  ∂y    ∂  ∂x        { ε }= [ ∂ ] { δ } ε3 ε1 ε2 16
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTIONS: Determination of the displacement at any point of the structure. {δ }e = displacement vector at any point in a {δ}e = [N]{δ* }e determined element {δ } = nodal displacement vector of a determined * e {δ }e  δ1  = [N1 , N 2 ,..., N n ]   δ n  element [N ] = interpolation function matrix [Ni ] = interpolation function of the nodal displacement a determined node i. {δ i } = displacement vector at a determined node i. So, the displacement at any point of a determined element is obtained: {δ } = [N1 ]{δ1}+ [N 2 ]{δ 2 }+ ... + [N n ]{δ n } Where [Nk] represents the contribution of node k’s displacement in the total displacement of any determined point. 17
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX: { } { } In order to cause the nodal displacements δ * and consequently deform the element it is necessary the presence of nodal forces f * Definition: The stiffness coefficient Kij represents the necessary force to apply to a certain degree of freedom i to obtain an unitary displacement of the degree of freedom j being 0 the influence in the displacement of the rest of the degrees of freedom n f i = ∑ K ij ⋅ δ j j =1 n= number of DOF K11 ⋅ δ1 + K12 ⋅ δ 2 + ... + K1n ⋅ δ n = f1  K n1 ⋅ δ1 + K n 2 ⋅ δ 2 + ... + K nn ⋅ δ n = f n { } = [K ] {δ } Writing in matrix form: f * * e e e [K]e = Stiffness matrix of the element 18
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STIFFNESS MATRIX OF A FINITE ELEMENT Relation between nodal forces an nodal displacements: {f }= [K ]{δ } * * Based on CAPLEYRON theory, the external work of the nodal forces is represented: w= 1 *T * {δ } {f } 2 w= 1 *T {δ } [K ]{δ * } 2 1 T σ The internal deformation energy caused by the nodal displacements: u = ∫ {ε } { }⋅ dv 2 As: {ε } = ∂{δ } = ∂[N ]{ * }= [B]{ * } 1 δ δ }T   δ * u = ∫ { [T [D ][ }⋅ dv δ * B]  B]{  2v T {σ } = [D]{ε } = [D][B]{δ * } T {ε } Being  w = u { } [K ]{δ } 1 * δ 2 T * { } 1 = δ* 2 [K ] = ∫ [B ]T [D][B ]⋅ dv T {σ }   * T  ∫ [B ] [D ][B ]⋅ dv  δ   v  { } STIFFNESS MATRIX v 19
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION OF THE STIFFNESS MATRIX IN GLOBAL COORDINATES Transformation matrix a x [T ] = bx   cx  az   bz  cz   ay by cy From local coordinate system of the element To global coordinate system {δ }= [T ]{δ } * {f }= [T ]{f } {f }= [T ] {f } * * {f }= [K ]{δ } * * T * * {f }= [K ]{δ } * * * {f }= [T ] {f }= [T ] [K ]{δ }= [T ] [K ][T ]{δ } * T * T [K ] = [T ]T [K ][T ] * T * [K] in GLOBAL coord. system 20
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A TRUSS ELEMENT Truss element: y - 2 node one-dimensional element (2DOF) u1 - Only allows to calculate tractive-compressive condition Nodal displacement vector {δ }= {u ,u } T 1 1 i u (x ) L u2 2 j x x , y , z Local axis i, j Element nodes 2 Determination of the interpolation function u1 , u2 Nodal displacements 2 G.D.L  1st order equation u ( x ) = a0 + a1.x u (0) = u1 u (l ) = u2 }u = a + a l} u1 = a0 2 a0 = u1 1 1 a1 = − u1 + u2 l l } 0 u1  u = [N1 , N 2 ]  u2  u1  1 0  a0   =   u 2  1 l  a1    1 a0  1 l  =  a1  l − 1 0 u1    1 u2   N1 = 1 − x l 0 1  − 1 1  u1  = 1 − x , x  u1  u = [1, x ]      u2    l  l  u2       l l N2 = x l 21
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT Truss element: 2DOF y u1 u2 1 2 L {δ } * x ,y x u1  =  u2  x ,y u   x ux ,y = [N1 N2 ] 1  = 1 − u2   l u1   ∂N1 ∂N2  u1   1 1  u1  ∂u  ∂  , ε x = =  [N1 , N2 ]  =   = − ,   u2   ∂x ∂x  u2   l l  u2  ∂x  ∂x        [B ] x N2 = l x l Local coordinate system [B ] Stiffness matrix obtaining formula: [k ] = ∫ [B] [D][B].dv [N ] = [N1 ,N2 ] N1 = 1 − x  u1    l  u2   T v 1  1  1 −  − 2 l  l  1 1  l2 l dx = E.S 1 − 1 K = ∫  E − , .dv = S.E ∫  . 1 1 1   l l l − 1 1   v  0 − 2 2   l   l     l [] 22
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT [k ] = EL.S −11  e  − 1 1  Stiffness matrix of TRUSS element in local coordinate system - RIGIDITY MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM  y y Displacement vector in global axis:  u1  x ϑ x cosθ u1   sinθ v   1 u  =   0  2 v2  X ,Y  0    − sinθ cosθ 0 0 cosθ 0 sinθ 0 0  u1  0  0      − sinθ  v1   cosθ  0  x ,y   23
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A TRUSS ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  [K ]e = [T ]T [K ] [T ] λ − µ 0 0  1   E.S  µ λ 0 0  0 [K ]e = l 0 0 λ − µ   − 1   0 0 µ λ  0  λ2 λµ  µ2 E.S  µλ [K ]e =  2 l −λ − λµ  − λµ − µ 2  − λ2 − λµ λ2 µλ − λµ  2 −µ  λµ   2 µ   0 − 1 0  λ 0 0 0  − µ  0 1 0  0  0 0 0  0 µ 0 λ 0 0 λ 0 −µ 0 0  µ  λ Stiffness matrix of a TRUSS element in GLOBAL coordinate system 24
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A BEAM ELEMENT Beam element: y - 2 node unidimensional element (4DOF) v1 - Only allows to calculate behind loading condition z Beam element interpolation function: N v   1   =  dN1 ϑ    dx 2 3   x  x 1 − 3  + 2  , v   l l  = ϑ   x x2  −6 2 +6 , l l  N2 N3 dN 2 dN 3 dx dx v1  N4   ϑ1  dN 4     v2  dx    ϑ2    x 2 x3 x−2 + 2 , l l x x2 1− 4 + 3 2 , l l v2 ϑ1 ϑ2  x v1  ϑ    =  1 v2  ϑ2    {δ } T 2 3 x 2 x 3  v1   x  x 3  − 2  , − + 2    l l  ϑ1  l l   x x2 x x 2  v2  6 2 −6 3 , − 2 + 3 2   l l l l  ϑ2  25
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - INTERPOLATION FUNCTION OF A COMPLETE BEAM ELEMENT Complete Beam element: y - 2 node one-dimensional element (6DOF) v1 - Only allows to calculate behind loading condition Complete Beam element interpolation function:  u  N1    v  =  0 ϑ     0    x 1 − l u      v  = 0 ϑ       0  0 N3 dN3 dx 0 2 x x 1 − 3  + 2  l l x x2 −6 2 +6 l l 0 N4 dN4 dx N2 0 0 0 3 x2 x3 x −2 + 2 l l x x2 1−4 +3 3 l l v2 ϑ1 ϑ2 u 2 u1 x z u1   v1  0     ϑ1  N6     dN6  u2  dx  v2    ϑ2    0 N5 dN5 dx x l 0 0 {δ } T 0 2 x x 3  − 2  l l x x2 6 2 −6 3 l l u1  v   1 ϑ    =  1 u2  v2      ϑ2  3 u   1  0  v1   x 2 x 3  ϑ1    − + 2   l l  u2  x x 2  v  − 2 + 3 2  2  l l  ϑ   2 26
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT BEAM element: 4 DOF dv dθ d 2v εx = −y = − y 2 being θ = dx dx dx Beam deflection ( { }) { } d 2v d2 ε x = − y 2 = − y 2 [N ] δ * = [B ] δ * dx dx {δ } * x, y  v1  θ    =  1 v  2 θ 2  x , y   [N ] = [N1 , N2 , N3 , N4 ] Local coordinate system [B] = − y − 62 + 12 x3 , − 4 + 6 x2 ,   l l l l 6 x 2 x − 12 3 , − + 6 2  l2 l l l  [k ] = ∫ [B]T [D][B]dv = v x  6 − l 2 + 12 l 3    − 4 + 6 x  l  l x 4 x 6 x 2 x l 2  6 2 = E∫   − 2 + 12 3 , − + 6 2 , 2 − 12 3 ,− + 6 2  dx ∫ y ds 6 x l l l l l l l l  s 0  − 12 3   l 2 l   2 x  − + 6 2  l   l 27
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT Stiffness matrix of BEAM element in local coordinate system - STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM  y y Displacement vector in global axis:  u1  x ϑ x cosθ u1   sinθ v   1 u  =   0  2 v2  X ,Y  0    − sinθ cosθ 0 0 0 0 cosθ sinθ 0  u1    0  v 1    − sinθ  u2   cosθ  v2    x ,y 28
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A BEAM ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  λ − µ  0 [k ]e = E.Iz  0 0   0 12 2  l3 µ   − 12 λ  l3  − 6 µ 2 [k ]e = E.I z  l  − 12  3 µ2  l 12  3 λµ l − 6  l3 µ  12 2 λ l3 6 λ l2 12 λµ l3 − 12 2 λ l3 6 l2 µ 0 0 0 λ 0 0 0 0 0 0 0 1 0 0λ 0− µ 0 0 0 µ λ 0 0  0  0  0   0 0   0  0  0   0 1    0  4 l 6 12 2 µ µ 2 l l3 −6 − 12 λ λµ 2 l l3 2 −6 µ l l 0 12 l3 6 l2 0 − 12 l3 6 l2 12 2 λ l3 −6 µ l2 0 0 0 − 12 6 0 3 2 l l −6 4 0 l2 l 0 0 0 −6 12 0 3 l2 l −6 2 0 2 l l               4  l 0  6   l2   2   l   0   −6   l2    4   l  λ −µ 0 0 0 0 µ λ 0 0 0 0  0 0 0 0 0 0 0 0 1 0 0 0 0 0 0  λ − µ 0 µ λ 0  0 0 1  Stiffness matrix of a BEAM element in GLOBAL coordinate system 29
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - STIFFNESS MATRIX OF A COMPLETE BEAM ELEMENT IN GLOBAL COORD. SYSTEM Naming µ = senϑ   λ = cosϑ  12 EI 2 EA 2 µ + λ L3 L − 12 EI EA µλ + µλ 3 L L − 12 EI 2 EA 2 λ + µ L3 L 6 EI µ L2 6 EI λ L2 sy. 4 EI L = TT k e T Ke = − 12 EI 2 EA 2 µ − λ L3 L 12 EI EA µλ − µλ L3 L − 6 EI µ L2 12 EI EA µλ − µλ L3 L − 12 EI 2 EA 2 λ − µ L3 L 6 EI λ L2 6 EI µ L2 − 6 EI λ L2 2 EI L 12 EI 2 EA 2 µ + λ L3 L − 12 EI EA µλ + µλ L3 L 6 EI µ L2 12 EI 2 EA 2 λ + µ L3 L − 6 EI λ L2 4 EI L λ = cos θ µ = sin θ 30
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR In a real problem different type of external loads can be found: - Punctual forces - Moments - Distributed loads For FEM modelling all external load should be applied in the element nodes   - Punctual forces - Moments - Distributed loads NECESITY TO OBTAIN AN EQUIVALENT SYSTEM BASED IN NODAL LOADS f = f* 31
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION - DETERMINATION THE EQUIVALENT NODAL LOAD VECTOR The external work due to all the external load applied to the system is given by 1 T w1 = ∫ {δ } { f }⋅ ds 2s By using the interpolation functions: w1 = { } [N ] { f }⋅ ds = 1 {δ } ∫ [N ] { f }⋅ ds 2 1 δ* 2∫ s T * T T T s Thus the work of the equivalent system can be written as: w2 = w1 = w2 { } {f } 1 * δ 2 T * { } ∫ [N ] { f }⋅ ds = 1 {δ } {f } 2 1 * δ 2 T * T T * s {f }= ∫ [N ] { f }⋅ ds T * s 32
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: Once, the nodal displacement vector of the studied system is solved the stress/strain condition at any point can be obtained. STEP 1: STRAIN DETERMINATION AT A CERTAIN POINT  δ1     . { δ }e = [ N 1 , N 2 ,...., N n ]    .   δn  Determination of the elongation at the selected point {ε } = [∂ ]{δ } {ε } = ∂[N ]{δ * }= [B]{δ * }   εx   ε    y  εz      = γ xy   γ yz      γ zx       ∂ ∂x 0 0 ∂ ∂y 0 ∂ ∂z 0 ∂ ∂y 0 ∂ ∂ ∂x ∂z 0 0   0   ∂ u  ∂ z    v  0     w ∂  ∂y  ∂  ∂x  Strain vector determination 33
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: STEP 2: STRESS DETERMINATION AT A CERTAIN POINT The relation between the strain and the stress in the linear elastic domain is given by the generalised Hooke’s law: [ ] [ ] [ ] 1 σ x − υ (σ y + σ z ) E 1 ε y = σ y − υ (σ z + σ x ) E 1 ε z = σ z − υ (σ x + σ y ) E εx = 2(1 + υ ) τ xy G E τ 2(1 + υ ) τ yz γ yz = yz = G E τ 2(1 + υ ) γ zx = zx = τ zx G E γ xy = τ xy = Generalized Hooke’s law LAMÉ ' s _ law : G = E  For isotropic materials 2(1 + υ ) 34
    • 2. FEM THEORY: STATIC IMPLICIT LINEAR CALCULATION DETERMINATION OF THE STRESS/STRAIN CONDITION: STEP 2: STRESS DETERMINATION AT A CERTAIN POINT The relation between the strain and the stress in the linear elastic domain is given by the generalized Hooke’s law: 0 0 0  υ (1 − υ ) υ  υ (1 − υ ) υ 0 0 0  ε  x   σ x   υ σ  0 0  ε  υ (1 − υ ) 0 y  y     1 − 2υ   0 σ z  0 0  0  ε z  E  0         =  2  τ xy  (1 − 2υ )(1 + υ )   γ xy    1 − 2υ    0 τ yz  0 0 0  0  γ yz         2   γ   τ zx     1 − 2υ   zx   0 0 0 0    0 2     {σ } = [D]{ε } 35