TABLA DE DERIVADAS
Upcoming SlideShare
Loading in...5
×
 

TABLA DE DERIVADAS

on

  • 4,054 views

 

Statistics

Views

Total Views
4,054
Views on SlideShare
3,933
Embed Views
121

Actions

Likes
1
Downloads
44
Comments
0

4 Embeds 121

http://cgiovanny.wordpress.com 103
http://bailenmates.blogspot.com 12
http://www.bailenmates.blogspot.com 3
http://www.slideshare.net 3

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

TABLA DE DERIVADAS TABLA DE DERIVADAS Document Transcript

  • TABLA DE DERIVADAS TABLA DE DERIVADAS FUNCIÓN FUNCIÓN DERIVADA FUNCIÓN FUNCIÓN DERIVADAa 0 sen x cos xx 1 sen u u cos ux2 2x cos x − senxxm m ⋅ x m−1 cos u − u senu 1f ( x ) + g( x ) f ( x ) + g ( x ) tgx 2 = 1 + tg 2 x cos x uk.f(x) k.f (x) tgu cos 2 u −1f ( x ) ⋅ g( x ) f ( x ) ⋅ g( x ) + f ( x ) ⋅ g ( x ) cot gx 2 = −(1 + cot g 2 x ) sen xf (x) f ( x ) ⋅ g( x ) − f ( x ) ⋅ g ( x ) − u cot g u = −(1 + cot g 2 u) ⋅ ug( x ) g2 ( x ) 2 sen u 1 − f (x) sec x tg x ⋅ sec xf(x) f 2 (x)(f o g)( x ) f (g(x )) ⋅ g (x ) sec u u ⋅ tg u ⋅ sec uum m ⋅ um−1 ⋅ u cos ec x − cot g x ⋅ cos ec x 1ln x cos ec u − u⋅ cot g u ⋅ cos ec u x u 1ln u arc sen x u 1− x 2 ln x 1 ulga x = arc sen u ln a x ln a 1− u2 u −1lga u arc cos x u ln a 1− x 2 − uex ex arc cos u 1− u2 1eu u e u arc tg x 1+ x 2 uax a x . ln a arc tg u 1+ u2 −1au a u .ln a u arc ctg x 1+ x 2 ⎛ v.u ⎞ − uuv u v ⎜ v ln u + ⎟ arc ctg u ⎝ u ⎠ 1+ u2 a,k ,m son constantes u,v,f,g,son funciones de la variable x
  • FÓRMULAS DE TRIGONOMETRIA FÓRMULAS DE TRIGONOMETRIA cat. opuesto cat. adyacente cat. opuesto sen αsenα = cos α = tgα = = hipotenusa hipotenusa cat. adyacente cos α 1 1 1cos ecα = sec α = tgα = sen α cos α cot g αsen 2 α + cos 2 α = 1 1 + tg 2 α = sec 2 α 1 + cot g2 α = cos ec 2 αsen(α + β) = senα ⋅ cos β + cos α ⋅ senβ α 1 − cos α sen 2α = 2 ⋅ sen α ⋅ cos α =±sen(α − β) = senα ⋅ cos β − cos α ⋅ senβ sen 2 2cos(α + β ) = cos α ⋅ cos β − senα ⋅ senβ cos 2α = cos 2 α − sen 2 α α 1 + cos α =±cos(α − β ) = cos α ⋅ cos β + senα ⋅ senβ cos 2 2 tgα + tgβ 2tgα α 1 − cos αtg(α + β) = tg2α = =± tg 1 − tgα ⋅ tgβ 1 − tg 2 α 2 1 + cos α A +B A −B A +B A −BsenA + senB = 2 ⋅ sen ⋅ cos cos A + cos B = 2 ⋅ cos ⋅ cos 2 2 2 2 A +B A −B A +B A −BsenA − senB = 2 ⋅ cos ⋅ sen cos A − cos B = −2 ⋅ sen ⋅ sen 2 2 2 2 a b c (R=radio de la Teorema de los senos: senA = senB = senC = 2R circunferencia circunscrita al triángulo ABC) Teorema del coseno: a 2 = b 2 + c 2 − 2 ⋅ b ⋅ c ⋅ cos A 1 1 a ⋅b ⋅c Área de un triángulo ABC: S= b ⋅ hb = b ⋅ a ⋅ senC S= 2 2 4 ⋅R a+b+c S = p(p − a )(p − b )(p − c ) Fórmula de Herón: donde p= (p es el semiperímetro del triángulo) 2 FÓRMULAS DE LOGARITMOS FÓRMULAS DE LOGARITMOS loga N = b ⇔ a b = N a>0 loga M ⋅ N = loga M + loga N M loga a = 1 loga = loga M − loga N N loga 1 = 0 loga MN = N ⋅ loga M logb M loga a m = m log a M = logb a NOTA : Si a = 10 → loga N = log N → (log aritmos decimales ) n ⎛ 1⎞ Si a = e → loga N = ln N → (log aritmos neperianos) e = lim ⎜1 + ⎟ = 2718281.... n→ +∞ ⎝ n⎠