Upcoming SlideShare
×

Gemi Pompaları ve Pompa Operasyonları

3,179

Published on

Pompa tipleri, pompa uygulamaları ve operasyonları.

Denizcilik ve Gemi Mühendisliği Sayfası

1 Comment
5 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Get a customised B2B digital marketing solutions from VALVE SOLUTIONS. visit us and drop us your valuable enquiries for a special promotional offer.

Are you sure you want to  Yes  No
Views
Total Views
3,179
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
466
1
Likes
5
Embeds 0
No embeds

No notes for slide

Gemi Pompaları ve Pompa Operasyonları

1. 1. PUMPS Pumping Basics Centrifugal Pumps Positive Displacement Pumps
2. 2. Pumping Basics <ul><li>PUMPS deliver energy (lb-ft, lb-in, joules. Etc.) to a given volume (cu.in., cc. gallon= 231 cu.in., liter= 1000cc) </li></ul><ul><ul><li>Pressure is usually thought of as force/area, but is also energy/volume (lb-in/in 3 = lb/in 2 or psi) </li></ul></ul><ul><ul><li>Pressure x Flow is power: energy/vol x vol/time </li></ul></ul><ul><ul><li>PSI x GPM = HP; Pascals x m 3 /sec = watts </li></ul></ul><ul><ul><li>1714 </li></ul></ul>Energy Gain (ib-in) per unit volume (in 3 ) = lb/in 2 (psi)
3. 3. Pumping Basics <ul><li>HEAD , energy per pound of liquid, commonly expressed in feet representing the vertical height of a static column of liquid corresponding to the pressure of the fluid at the point in question </li></ul><ul><li>In general, a liquid may have three kinds of energy. That is, the capacity to do work may be due to three factors: </li></ul><ul><ul><li>Potential Head - (energy of position, i.e. the work obtainable in dropping a vertical distance) Hz is directly measured in feet </li></ul></ul><ul><ul><li>Static Pressure Head - (energy per pound due to pressure, i.e. the height to which a liquid can be raised by a given pressure) Hp (ft) = [PSI x 2.31] / SG </li></ul></ul><ul><ul><li>Velocity Head - (kinetic energy per pound, i.e. the vertical distance a liquid would have to fall to acquire velocity V) Hv (ft) = V2 / 2g </li></ul></ul>2.31 ft H 2 O SG= 1 Gasoline SG= 0.7 Molasses SG= 1.5 1.54 ft 3.3 ft Velocity V H V = V 2 2g P 1 psi P 1 psi P 1 psi
4. 4. Pumping Basics <ul><li>Total Pump Head , is the difference between the energy per lb on the discharge side vs. the suction side of a pump (expressed in feet) </li></ul><ul><ul><li>Z s & Z d are the elevation (ft) to the point of suction or discharge measure from thr datum plane (usually through the center of the pump’s inlet port) </li></ul></ul><ul><ul><li>H fs & H fd are the friction losses (in feet) in the direction of flow to/from the pump suction & discharge parts to the respective measuring points </li></ul></ul><ul><li>H = ( P d – P s ) x 2.31/SG </li></ul><ul><ul><li>+ ( Z d – Z s ) </li></ul></ul><ul><ul><li>+ ( V d 2 – V s 2 ) </li></ul></ul><ul><ul><li> 2 g </li></ul></ul><ul><ul><li>+ ( Hf d – Hf s ) </li></ul></ul>P s P d V s Z s Z d V d Hf s Hf d P P
5. 5. Pump Types <ul><li>Kinetic vs.  Positive Displacement </li></ul><ul><li>Centrifugal vs.  Special Effect </li></ul><ul><li> e.g., Jet Pump (Eductor) </li></ul><ul><li>Radial vs.  Axial vs.  Mixed Flow </li></ul>
6. 6. Centrifugal (Radial Flow) IMPELLER EYE VOLUTE DISCHARGE SUCTION
7. 7. (Radial) Centrifugal Pump Varieties <ul><li>Horizontal vs. Vertical </li></ul><ul><li>Impeller construction </li></ul><ul><li>Closed Impeller </li></ul><ul><li>Semi-closed Impeller </li></ul><ul><li>Open Impeller </li></ul>
8. 8. (Radial) Centrifugal Pump Varieties <ul><li>Single suction </li></ul><ul><li>Multi-stage centrifugal pumps </li></ul><ul><li>Double suction </li></ul>
9. 9. Centrifugal Pump Characteristics PRESSURE (PSI) IDEAL ACTUAL PUMP CHARACTERISTIC SYSTEM CHARACTERISTIC SHUT-OFF HEAD (no flow) OPERATING POINT PUMP SYSTEM P FLOW (GPM)
10. 10. Centrifugal Pump Characteristics PRESSURE (PSI) IDEAL ACTUAL PUMP CHARACTERISTIC SYSTEM CHARACTERISTIC SHUT-OFF HEAD (no flow) OPERATING POINT PUMP SYSTEM PUMP CHARACTERISTIC (higher RPM) SHUT-OFF HEAD (no flow) PUMP CHARACTERISTIC (lower RPM) P FLOW (GPM)
11. 11. Pump Types <ul><li>Kinetic vs.  Positive Displacement </li></ul><ul><li>Reciprocating vs.  Rotary </li></ul>Fixed volume pushed through each stroke (recip) or revolution (rotary)
12. 12. Pos. Displ. Pump Characteristics PRESSURE (PSI) IDEAL ACTUAL PUMP CHARACTERISTIC SYSTEM CHARACTERISTIC OPERATING POINT PUMP SYSTEM P FLOW (GPM)
13. 13. Pos. Displ. Pump Characteristics PRESSURE (PSI) IDEAL PUMP SYSTEM ACTUAL ? Relief Valve Relief Valve setting Through Pump Into System Recirc Recirc FLOW (GPM) P
14. 14. Pos. Displ. Pump Characteristics PRESSURE (PSI) IDEAL PUMP SYSTEM ACTUAL Relief Valve Relief Valve setting Through Pump Recirc Increase Pump Speed FLOW (GPM) P
15. 15. Reciprocating Pumps <ul><li>Single acting </li></ul><ul><li>Double acting </li></ul>one vol one vol two vols GPM= VOL (gal) x CYCLE/MIN GPM= 2 x VOL (gal) x CYCLE/MIN one cycle one cycle
16. 16. Reciprocating Pumps <ul><li>Simplex (one piston) </li></ul><ul><li>Duplex </li></ul>Steam End Liquid End Slide Valve Valve Chest <ul><li>single or double acting </li></ul><ul><li>horizontal or vertical </li></ul><ul><li>Triplex & Multiplex </li></ul>Motor or Engine driven Multiple (3 or more) plungers (pistons) <ul><li>single or double acting </li></ul><ul><li>horizontal or vertical </li></ul><ul><li>single or double acting </li></ul><ul><li>horizontal or vertical </li></ul>
17. 17. Reciprocating Pumps <ul><li>Diaphragm Pump (air operatated) </li></ul>DISCHARGE SUCTION SHUTTLE VALVE AIR SUPPLY EXHAUST
18. 18. Rotary Pumps <ul><li>Gear Pump (external gear) </li></ul><ul><li>(Internal) Gear Pump </li></ul> = volume betw adj teeth  in 3 x # teeth x 2 gears x RPM 231 in 3 /gal = GPM Driving Gear Driven Gear Driving Gear Driven Gear
19. 19. Rotary Pumps <ul><li>Gear Pumps </li></ul><ul><li>Lobe Pumps </li></ul>One rotor does not drive the other Timing Gears required Two, three, or more lobes possible: 2 lobes = “ rotating piston ”
20. 20. Rotary Pumps <ul><li>Gear Pumps </li></ul><ul><li>Lobe Pumps </li></ul><ul><li>Screw Pumps </li></ul><ul><li>Double-screw </li></ul><ul><li>Double-end </li></ul><ul><li>with Timing Gears </li></ul><ul><li>Triple-screw </li></ul><ul><li>Double-end </li></ul><ul><li>without Timing Gears </li></ul><ul><li>Double-screw </li></ul><ul><li>Single-end </li></ul><ul><li>without Timing Gears </li></ul>
21. 21. Rotary Pumps <ul><li>Gear Pumps </li></ul><ul><li>Lobe Pumps </li></ul><ul><li>Screw Pumps </li></ul><ul><li>Sliding Vane Pumps </li></ul>
22. 22. Rotary Pumps <ul><li>Gear Pumps </li></ul><ul><li>Lobe Pumps </li></ul><ul><li>Screw Pumps </li></ul><ul><li>Sliding Vane Pumps </li></ul><ul><li>Liquid Piston Pump </li></ul><ul><li>Circulated water acts as piston </li></ul><ul><li>Air drawn in to create vacuum </li></ul><ul><li>Used to prime centrifugal pump </li></ul>
23. 23. Pumping Operations Starting Procedures Securing Procedures Sytem Operation
24. 24. General Considerations <ul><li>Insure that suction side piping is lined up as intended. All suction connections should be checked to prevent drawing from some unintended location. </li></ul><ul><li>Insure that discharge piping is lined up as intended. All discharge connections should be checked to prevent inadvertent discharge to an unintended space or overboard. </li></ul><ul><li>Be familiar with normal operating parameters (pressures, temperatures, etc.) so that abnormalities may be detected promptly. </li></ul>
25. 25. Centrifugal Pumps
26. 26. Rotary (P.D.) Pumps
27. 27. Steam Recip. Pumps SUPPLY EXHAUST DISCHARGE SUCTION STEAM END LIQUID END
28. 28. Turbine Feed Pumps SUPPLY EXHAUST DISCHARGE SUCTION PRESS REG V. RECIRC DRAIN L.O. SYSTEM
29. 29. Turbine Feed Pumps DRAIN DISCHARGE SUPPLY EXHAUST SUCTION PRESS REG V. SUCTION MAIN AUX RECIRC L.O. PUMP O/S TRIP
30. 30. Turbine Feed Pumps SUPPLY PRESS REG V. L.O. SYSTEM SUCTION EXHAUST DISCHARGE RECIRC DRAIN
31. 31. Turbine Feed Pumps SUPPLY PRESS REG V. L.O. supply Fd. Pump discharge pressure L.O. return PILOT VALVE OPERATING CYLINDER Press incr Press decr … or relax spring … or tighten spring Reach rod Operating piston drops decreasing steam flow Operating piston rises increasing steam flow <ul><li>With spring tension & pump pressure balanced, steam flow is constant </li></ul><ul><li>Overspeed trip drops operating piston & shuts off steam flow </li></ul>O/S Trip
32. 32. Piping systems <ul><li>Example 1: (Generic) Fuel oil Transfer </li></ul>
33. 33. Piping systems <ul><li>Fuel oil Transfer Manifold </li></ul>SUCTION FILL
34. 34. Piping systems <ul><li>Example 1: (Generic) Fuel oil Transfer </li></ul>
35. 35. Piping systems <ul><li>Example 1: (Generic) Fuel oil Transfer </li></ul>
36. 36. Piping systems <ul><li>Example 2: Bilge, Ballast, Fire Main </li></ul>SEA CHESTS
37. 37. Piping systems <ul><li>Bilge Manifolds </li></ul><ul><li>Ballast Manifolds </li></ul><ul><li>Low pressure in upper chamber draws bilge water up </li></ul><ul><li>Stop-check prevents bilge flooding </li></ul><ul><li>Ballasting or deballasting possible </li></ul>
38. 38. Piping systems <ul><li>Example 2: Bilge, Ballast, Fire Main </li></ul>
1. A particular slide catching your eye?

Clipping is a handy way to collect important slides you want to go back to later.