Upcoming SlideShare
×

# Lesson 6: Limits Involving ∞ (Section 41 slides)

292 views
196 views

Published on

0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
292
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
3
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Lesson 6: Limits Involving ∞ (Section 41 slides)

1. 1. Section 1.6 Limits involving Infinity V63.0121.041, Calculus I New York University September 22, 2010Announcements Quiz 1 is next week in recitation. Covers Sections 1.1–1.4 . . . . . .
2. 2. Announcements Quiz 1 is next week in recitation. Covers Sections 1.1–1.4 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 2 / 37
3. 3. Objectives “Intuit” limits involving infinity by eyeballing the expression. Show limits involving infinity by algebraic manipulation and conceptual argument. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 3 / 37
4. 4. Recall the definition of limitDefinitionWe write lim f(x) = L x→aand say “the limit of f(x), as x approaches a, equals L”if we can make the values of f(x) arbitrarily close to L (as close to L aswe like) by taking x to be sufficiently close to a (on either side of a) butnot equal to a. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 4 / 37
5. 5. Recall the unboundedness problem 1Recall why lim+ doesn’t exist. x→0 x y . .?. L . x .No matter how thin we draw the strip to the right of x = 0, we cannot“capture” the graph inside the box. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 5 / 37
6. 6. Recall the unboundedness problem 1Recall why lim+ doesn’t exist. x→0 x y . .?. L . x .No matter how thin we draw the strip to the right of x = 0, we cannot“capture” the graph inside the box. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 5 / 37
7. 7. Recall the unboundedness problem 1Recall why lim+ doesn’t exist. x→0 x y . .?. L . x .No matter how thin we draw the strip to the right of x = 0, we cannot“capture” the graph inside the box. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 5 / 37
8. 8. Recall the unboundedness problem 1Recall why lim+ doesn’t exist. x→0 x y . .?. L . x .No matter how thin we draw the strip to the right of x = 0, we cannot“capture” the graph inside the box. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 5 / 37
9. 9. OutlineInfinite Limits Vertical Asymptotes Infinite Limits we Know Limit “Laws” with Infinite Limits Indeterminate Limit formsLimits at ∞ Algebraic rates of growth Rationalizing to get a limit . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 6 / 37
10. 10. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
11. 11. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
12. 12. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
13. 13. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
14. 14. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
15. 15. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
16. 16. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
17. 17. Infinite LimitsDefinitionThe notation y . lim f(x) = ∞ x→ameans that values of f(x) canbe made arbitrarily large (aslarge as we please) by taking xsufficiently close to a but notequal to a. . x . “Large” takes the place of “close to L”. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 7 / 37
18. 18. Negative InfinityDefinitionThe notation lim f(x) = −∞ x→ameans that the values of f(x) can be made arbitrarily large negative (aslarge as we please) by taking x sufficiently close to a but not equal to a. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 8 / 37
19. 19. Negative InfinityDefinitionThe notation lim f(x) = −∞ x→ameans that the values of f(x) can be made arbitrarily large negative (aslarge as we please) by taking x sufficiently close to a but not equal to a. We call a number large or small based on its absolute value. So −1, 000, 000 is a large (negative) number. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 8 / 37
20. 20. Vertical AsymptotesDefinitionThe line x = a is called a vertical asymptote of the curve y = f(x) if atleast one of the following is true: lim f(x) = ∞ lim f(x) = −∞ x→a x→a lim f(x) = ∞ lim f(x) = −∞ x→a+ x→a+ lim f(x) = ∞ lim f(x) = −∞ x→a− x→a− . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 9 / 37
21. 21. Infinite Limits we Know y . . . 1 lim+ = ∞ x→0 x . . . . . . . . x . . . . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 10 / 37
22. 22. Infinite Limits we Know y . . . 1 lim+ = ∞ x→0 x . 1 lim = −∞ x→0− x . . . . . . . x . . . . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 10 / 37
23. 23. Infinite Limits we Know y . . . 1 lim+ = ∞ x→0 x . 1 lim = −∞ x→0− x . . . . . . . x . 1 lim =∞ x→0 x2 . . . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 10 / 37
24. 24. Finding limits at trouble spotsExampleLet x2 + 2 f(x) = x2 − 3x + 2Find lim f(x) and lim+ f(x) for each a at which f is not continuous. x→a− x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 11 / 37
25. 25. Finding limits at trouble spotsExampleLet x2 + 2 f(x) = x2 − 3x + 2Find lim f(x) and lim+ f(x) for each a at which f is not continuous. x→a− x→aSolutionThe denominator factors as (x − 1)(x − 2). We can record the signs ofthe factors on the number line. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 11 / 37
26. 26. Use the number line . . x − 1) ( . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
27. 27. Use the number line − .. 0 .. . + . x − 1) ( 1 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
28. 28. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
29. 29. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
30. 30. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . . f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
31. 31. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . . f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
32. 32. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞. + . f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
33. 33. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ + − . f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
34. 34. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . + − − . f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
35. 35. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ . + − − − f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
36. 36. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
37. 37. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
38. 38. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 .So . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
39. 39. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 .So lim f(x) = +∞ x→1− . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
40. 40. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 .So lim f(x) = +∞ x→1− lim f(x) = −∞ x→1+ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
41. 41. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 .So lim f(x) = +∞ lim f(x) = −∞ x→1− x→2− lim f(x) = −∞ x→1+ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
42. 42. Use the number line − .. 0 .. . + . x − 1) ( 1 . − . 0 .. . + . x − 2) ( 2 . . + . x2 + 2) ( . + . ∞ .. ∞ . . ∞ .. ∞ + − − − + . + f .(x) 1 . 2 .So lim f(x) = +∞ lim f(x) = −∞ x→1− x→2− lim f(x) = −∞ lim f(x) = +∞ x→1+ x→2+ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 12 / 37
43. 43. In English, nowTo explain the limit, you can say:“As x → 1− , the numerator approaches 3, and the denominatorapproaches 0 while remaining positive. So the limit is +∞.” . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 13 / 37
44. 44. The graph so far lim f(x) = + ∞ lim f(x) = − ∞ x→1− x→2− lim f(x) = − ∞ lim f(x) = + ∞ x→1+ x→2+ y . . . . . . . x − . 1 1 . 2 . 3 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 14 / 37
45. 45. The graph so far lim f(x) = + ∞ lim f(x) = − ∞ x→1− x→2− lim f(x) = − ∞ lim f(x) = + ∞ x→1+ x→2+ y . . . . . . . x − . 1 1 . 2 . 3 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 14 / 37
46. 46. The graph so far lim f(x) = + ∞ lim f(x) = − ∞ x→1− x→2− lim f(x) = − ∞ lim f(x) = + ∞ x→1+ x→2+ y . . . . . . . x − . 1 1 . 2 . 3 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 14 / 37
47. 47. The graph so far lim f(x) = + ∞ lim f(x) = − ∞ x→1− x→2− lim f(x) = − ∞ lim f(x) = + ∞ x→1+ x→2+ y . . . . . . . x − . 1 1 . 2 . 3 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 14 / 37
48. 48. The graph so far lim f(x) = + ∞ lim f(x) = − ∞ x→1− x→2− lim f(x) = − ∞ lim f(x) = + ∞ x→1+ x→2+ y . . . . . . . x − . 1 1 . 2 . 3 . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 14 / 37
49. 49. Limit Laws (?) with infinite limitsFact If lim f(x) = ∞ and lim g(x) = ∞, x→a x→a then lim (f(x) + g(x)) = ∞. x→a If lim f(x) = −∞ and x→a lim g(x) = −∞, then x→a lim (f(x) + g(x)) = −∞. x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 15 / 37
50. 50. Rules of Thumb with infinite limits ∞ . +∞=∞Fact If lim f(x) = ∞ and lim g(x) = ∞, x→a x→a . then lim (f(x) + g(x)) = ∞. x→a If lim f(x) = −∞ and x→a lim g(x) = −∞, then x→a lim (f(x) + g(x)) = −∞. x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 15 / 37
51. 51. Rules of Thumb with infinite limits ∞ . +∞=∞Fact If lim f(x) = ∞ and lim g(x) = ∞, x→a x→a . − . ∞ + (−∞) = −∞ then lim (f(x) + g(x)) = ∞. x→a If lim f(x) = −∞ and x→a lim g(x) = −∞, then x→a . lim (f(x) + g(x)) = −∞. x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 15 / 37
52. 52. Rules of Thumb with infinite limitsFact If lim f(x) = L and lim g(x) = ±∞, then lim (f(x) + g(x)) = ±∞. x→a x→a x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 16 / 37
53. 53. Rules of Thumb with infinite limits L+∞=∞ . L − ∞ = −∞Fact . If lim f(x) = L and lim g(x) = ±∞, then lim (f(x) + g(x)) = ±∞. x→a x→a x→a . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 16 / 37
54. 54. Rules of Thumb with infinite limitsKids, dont try this at home!Fact The product of a finite limit and an infinite limit is infinite if the finite limit is not 0. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 17 / 37
55. 55. Rules of Thumb with infinite limitsKids, dont try this at home! { ∞ if L > 0 . ·∞= L −∞ if L < 0.Fact The product of a finite limit and an infinite limit is infinite if the finite limit is not 0. . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 17 / 37
56. 56. Rules of Thumb with infinite limitsKids, dont try this at home! { ∞ if L > 0 . ·∞= L −∞ if L < 0.Fact The product of a finite limit and an infinite limit is infinite if the finite limit is not 0. . . { −∞ if L > 0 . · (−∞) = L ∞ if L < 0. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 17 / 37
57. 57. Multiplying infinite limitsKids, dont try this at home!Fact The product of two infinite limits is infinite. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 18 / 37
58. 58. Multiplying infinite limitsKids, dont try this at home! ∞·∞=∞ . ∞ · (−∞) = −∞ (−∞) · (−∞) = ∞Fact The product of two infinite limits is infinite. . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 18 / 37
59. 59. Dividing by InfinityKids, dont try this at home!Fact The quotient of a finite limit by an infinite limit is zero. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 19 / 37
60. 60. Dividing by InfinityKids, dont try this at home! L . =0 ∞Fact . The quotient of a finite limit by an infinite limit is zero. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 19 / 37
61. 61. Dividing by zero is still not allowed 1 . . =∞ 0There are examples of such limit forms where the limit is ∞, −∞,undecided between the two, or truly neither. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 20 / 37
62. 62. Indeterminate Limit forms LLimits of the form are indeterminate. There is no rule for evaluating 0such a form; the limit must be examined more closely. Consider these: 1 −1 lim =∞ lim = −∞ x→0 x2 x→0 x2 1 1 lim+ = ∞ lim = −∞ x→0 x x→0− x 1 LWorst, lim is of the form , but the limit does not exist, even x→0 x sin(1/x) 0in the left- or right-hand sense. There are infinitely many verticalasymptotes arbitrarily close to 0! . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 21 / 37
63. 63. Indeterminate Limit formsLimits of the form 0 · ∞ and ∞ − ∞ are also indeterminate.Example 1 The limit lim+ sin x · is of the form 0 · ∞, but the answer is 1. x→0 x 1 The limit lim+ sin2 x · is of the form 0 · ∞, but the answer is 0. x→0 x 1 The limit lim+ sin x · 2 is of the form 0 · ∞, but the answer is ∞. x→0 xLimits of indeterminate forms may or may not “exist.” It will depend onthe context. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 22 / 37
64. 64. Indeterminate forms are like Tug Of WarWhich side wins depends on which side is stronger. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 23 / 37
65. 65. OutlineInfinite Limits Vertical Asymptotes Infinite Limits we Know Limit “Laws” with Infinite Limits Indeterminate Limit formsLimits at ∞ Algebraic rates of growth Rationalizing to get a limit . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 24 / 37
66. 66. DefinitionLet f be a function defined on some interval (a, ∞). Then lim f(x) = L x→∞means that the values of f(x) can be made as close to L as we like, bytaking x sufficiently large. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 25 / 37
67. 67. DefinitionLet f be a function defined on some interval (a, ∞). Then lim f(x) = L x→∞means that the values of f(x) can be made as close to L as we like, bytaking x sufficiently large.DefinitionThe line y = L is a called a horizontal asymptote of the curve y = f(x)if either lim f(x) = L or lim f(x) = L. x→∞ x→−∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 25 / 37
68. 68. DefinitionLet f be a function defined on some interval (a, ∞). Then lim f(x) = L x→∞means that the values of f(x) can be made as close to L as we like, bytaking x sufficiently large.DefinitionThe line y = L is a called a horizontal asymptote of the curve y = f(x)if either lim f(x) = L or lim f(x) = L. x→∞ x→−∞y = L is a horizontal line! . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 25 / 37
69. 69. Basic limits at infinityTheoremLet n be a positive integer. Then 1 lim =0 x→∞ xn 1 lim =0 x→−∞ xn . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 26 / 37
70. 70. Limit laws at infinityFactAny limit law that concerns finite limits at a finite point a is still true ifthe finite point is replaced by infinity.That is, if lim f(x) = L and lim g(x) = M, then x→∞ x→∞ lim (f(x) + g(x)) = L + M x→∞ lim (f(x) − g(x)) = L − M x→∞ lim cf(x) = c · L (for any constant c) x→∞ lim f(x) · g(x) = L · M x→∞ f(x) L lim = (if M ̸= 0) x→∞ g(x) M . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 27 / 37
71. 71. Using the limit laws to compute limits at ∞Example xFind lim x→∞ x2 +1 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 28 / 37
72. 72. Using the limit laws to compute limits at ∞Example xFind lim x→∞ x2 +1AnswerThe limit is 0. y . . x . . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 28 / 37
73. 73. SolutionSolutionFactor out the largest power of x from the numerator and denominator.We have x x(1) 1 1 = 2 = · x2 +1 x (1 + 1/x2 ) x 1 + 1/x2 x 1 1 1 1 lim = lim = lim · lim x→∞ x2 + 1 x→∞ x 1 + 1/x2 x→∞ x x→∞ 1 + 1/x2 1 =0· = 0. 1+0 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 29 / 37
74. 74. Using the limit laws to compute limits at ∞Example xFind lim x→∞ x2 +1AnswerThe limit is 0. y . . x .Notice that the graph does cross the asymptote, which contradicts oneof the commonly held beliefs of what an asymptote is. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 30 / 37
75. 75. SolutionSolutionFactor out the largest power of x from the numerator and denominator.We have x x(1) 1 1 = 2 = · x2 +1 x (1 + 1/x2 ) x 1 + 1/x2 x 1 1 1 1 lim = lim = lim · lim x→∞ x2 + 1 x→∞ x 1 + 1/x2 x→∞ x x→∞ 1 + 1/x2 1 =0· = 0. 1+0RemarkHad the higher power been in the numerator, the limit would have been∞. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 31 / 37
76. 76. Another ExampleExampleFind 2x3 + 3x + 1 lim x→∞ 4x3 + 5x2 + 7if it exists.A does not existB 1/2C 0D ∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 32 / 37
77. 77. Another ExampleExampleFind 2x3 + 3x + 1 lim x→∞ 4x3 + 5x2 + 7if it exists.A does not existB 1/2C 0D ∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 32 / 37
78. 78. SolutionSolutionFactor out the largest power of x from the numerator and denominator.We have 2x3 + 3x + 1 x3 (2 + 3/x2 + 1/x3 ) = 3 4x3 + 5x2 + 7 x (4 + 5/x + 7/x3 ) 2x3 + 3x + 1 2 + 3/x2 + 1/x3 lim = lim x→∞ 4x3 + 5x2 + 7 x→∞ 4 + 5/x + 7/x3 2+0+0 1 = = 4+0+0 2 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 33 / 37
79. 79. SolutionSolutionFactor out the largest power of x from the numerator and denominator.We have 2x3 + 3x + 1 x3 (2 + 3/x2 + 1/x3 ) = 3 4x3 + 5x2 + 7 x (4 + 5/x + 7/x3 ) 2x3 + 3x + 1 2 + 3/x2 + 1/x3 lim = lim x→∞ 4x3 + 5x2 + 7 x→∞ 4 + 5/x + 7/x3 2+0+0 1 = = 4+0+0 2UpshotWhen finding limits of algebraic expressions at infinity, look at thehighest degree terms. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 33 / 37
80. 80. Still Another ExampleExampleFind √ 3x4 + 7 lim x→∞ x2 + 3 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 34 / 37
81. 81. Still Another Example √ √ √ . 3x4 + 7 ∼ 3x4 = 3x2ExampleFind √ 3x4 + 7 . lim x→∞ x2 + 3Answer √The limit is 3. . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 34 / 37
82. 82. SolutionSolution √ √ 3x4 + 7 x4 (3 + 7/x4 ) lim = lim x→∞ x2 + 3 x→∞ x2 (1 + 3/x2 ) √ x2 (3 + 7/x4 ) = lim x→∞ x2 (1 + 3/x2 ) √ (3 + 7/x4 ) = lim x→∞ 1 + 3/x2 √ 3+0 √ = = 3. 1+0 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 35 / 37
83. 83. Rationalizing to get a limitExample (√ )Compute lim 4x2 + 17 − 2x . x→∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 36 / 37
84. 84. Rationalizing to get a limitExample (√ )Compute lim 4x2 + 17 − 2x . x→∞SolutionThis limit is of the form ∞ − ∞, which we cannot use. So werationalize the numerator (the denominator is 1) to get an expressionthat we can use the limit laws on. (√ ) (√ ) √4x2 + 17 + 2x lim 4x 2 + 17 − 2x = lim 4x 2 + 17 − 2x · √ x→∞ x→∞ 4x2 + 17 + 2x (4x2 + 17) − 4x2 = lim √ x→∞ 4x2 + 17 + 2x 17 = lim √ =0 x→∞ 4x2 + 17 + 2x . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 36 / 37
85. 85. Kick it up a notchExample (√ )Compute lim 4x2 + 17x − 2x . x→∞ . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 37 / 37
86. 86. Kick it up a notchExample (√ )Compute lim 4x2 + 17x − 2x . x→∞SolutionSame trick, different answer: (√ ) lim 4x2 + 17x − 2x x→∞ (√ √ ) 4x2 + 17 + 2x = lim + 17x − 2x · √ 4x2 x→∞ 4x2 + 17x + 2x (4x2 + 17x) − 4x2 = lim √ x→∞ 4x2 + 17x + 2x 17x 17 17 = lim √ = lim √ = x→∞ 4x2 + 17x + 2x x→∞ 4 + 17/x + 2 4 . . . . . . V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 37 / 37
87. 87. Summary Infinity is a more complicated concept than a single number. There are rules of thumb, but there are also exceptions. Take a two-pronged approach to limits involving infinity: Look at the expression to guess the limit. Use limit rules and algebra to verify it. . . . . . .V63.0121.041, Calculus I (NYU) Section 1.6 Limits involving Infinity September 22, 2010 38 / 37