SlideShare a Scribd company logo
1 of 301
Download to read offline
Sec on 4.4
Curve Sketching
  V63.0121.001: Calculus I
Professor Ma hew Leingang
       New York University


      April 13, 2011
                             .
Announcements
   Quiz 4 on Sec ons 3.3,
   3.4, 3.5, and 3.7 this
   week (April 14/15)
   Quiz 5 on Sec ons
   4.1–4.4 April 28/29
   Final Exam Thursday May
   12, 2:00–3:50pm
   I am teaching Calc II MW
   2:00pm and Calc III TR
   2:00pm both Fall ’11 and
   Spring ’12
Objectives

   given a func on, graph it
   completely, indica ng
       zeroes (if easy)
       asymptotes if applicable
       cri cal points
       local/global max/min
       inflec on points
Why?

Graphing func ons is like
dissec on
Why?

Graphing func ons is like
dissec on … or diagramming
sentences
Why?

Graphing func ons is like
dissec on … or diagramming
sentences
You can really know a lot
about a func on when you
know all of its anatomy.
The Increasing/Decreasing Test
 Theorem (The Increasing/Decreasing Test)
 If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b),
 then f is decreasing on (a, b).

 Example
                                                                f(x)
  f(x) = x3 + x2
                                                    .
The Increasing/Decreasing Test
 Theorem (The Increasing/Decreasing Test)
 If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b),
 then f is decreasing on (a, b).

 Example
                                                                   f(x)
                                                          f′ (x)
   f(x) = x3 + x2
  f′ (x) = 3x2 + 2x                                 .
Testing for Concavity
 Theorem (Concavity Test)
 If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward
 on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave
 downward on (a, b).

 Example
                                                             f(x)

   f(x) = x3 + x2
                                                    .
Testing for Concavity
 Theorem (Concavity Test)
 If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward
 on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave
 downward on (a, b).

 Example
                                                        f′ (x) f(x)

   f(x) = x3 + x2
  f′ (x) = 3x2 + 2x                                 .
Testing for Concavity
 Theorem (Concavity Test)
 If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward
 on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave
 downward on (a, b).

 Example
                                                 f′′ (x) f′ (x) f(x)

    f(x) = x3 + x2
   f′ (x) = 3x2 + 2x                                .
  f′′ (x) = 6x + 2
Graphing Checklist
To graph a func on f, follow this plan:
 0. Find when f is posi ve, nega ve, zero,
    not defined.
Graphing Checklist
To graph a func on f, follow this plan:
 0. Find when f is posi ve, nega ve, zero,
    not defined.
 1. Find f′ and form its sign chart.
    Conclude informa on about
    increasing/decreasing and local
    max/min.
Graphing Checklist
To graph a func on f, follow this plan:
 0. Find when f is posi ve, nega ve, zero,
    not defined.
 1. Find f′ and form its sign chart.
    Conclude informa on about
    increasing/decreasing and local
    max/min.
 2. Find f′′ and form its sign chart.
    Conclude concave up/concave down
    and inflec on.
Graphing Checklist
To graph a func on f, follow this plan:
 3. Put together a big chart to assemble
    monotonicity and concavity data
Graphing Checklist
To graph a func on f, follow this plan:
 3. Put together a big chart to assemble
    monotonicity and concavity data
 4. Graph!
Outline
 Simple examples
    A cubic func on
    A quar c func on

 More Examples
   Points of nondifferen ability
   Horizontal asymptotes
   Ver cal asymptotes
   Trigonometric and polynomial together
   Logarithmic
Graphing a cubic
 Example
 Graph f(x) = 2x3 − 3x2 − 12x.
Graphing a cubic
 Example
 Graph f(x) = 2x3 − 3x2 − 12x.
 (Step 0) First, let’s find the zeros. We can at least factor out one
 power of x:
                          f(x) = x(2x2 − 3x − 12)
 so f(0) = 0. The other factor is a quadra c, so we the other two
 roots are
                       √                          √
                   3 ± 32 − 4(2)(−12) 3 ± 105
               x=                          =
                              4                   4
 It’s OK to skip this step for now since the roots are so complicated.
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:

                           .
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:

                           .                x−2
                                       2
                                            x+1
                    −1                      f′ (x)
                    −1                 2    f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                                               x+1
                    −1                         f′ (x)
                    −1                 2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                    −1                 2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +
                   −1                  2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −
                   −1                  2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                   −1                  2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                  ↗−1                  2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                  ↗−1       ↘          2       f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                  ↗−1       ↘          2   ↗   f(x)
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                  ↗−1       ↘          2   ↗   f(x)
                   max
Step 1: Monotonicity
                f(x) = 2x3 − 3x2 − 12x
            =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2)
 We can form a sign chart from this:
                  −        .−              +
                                               x−2
                                       2
                  −         +              +
                                               x+1
                   −1                          f′ (x)
                  +         −              +
                  ↗−1       ↘      2       ↗   f(x)
                   max            min
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                          .
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                          .
                                             f′′ (x)
                              1/2            f(x)
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                            .
                       −−                    f′′ (x)
                                1/2          f(x)
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                            .
                       −−             ++     f′′ (x)
                                1/2          f(x)
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                            .
                       −−             ++     f′′ (x)
                       ⌢        1/2          f(x)
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                            .
                       −−           ++       f′′ (x)
                       ⌢        1/2 ⌣        f(x)
Step 2: Concavity

                      f′ (x) = 6x2 − 6x − 12
                  =⇒ f′′ (x) = 12x − 6 = 6(2x − 1)

 Another sign chart:
                            .
                       −−           ++       f′′ (x)
                       ⌢        1/2 ⌣        f(x)
                                 IP
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

                     .
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +   −.      −       +   f′ (x)
             ↗−1 ↘       ↘ 2     ↗   monotonicity
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
               7  −61/2 −20          f(x)
              −1   1/2   2           shape of f
              max   IP  min
monotonicity and concavity


             II        I
                   .

             III       IV
monotonicity and concavity
                            decreasing,
                            concave
                            down
             II        I
                   .

             III       IV
monotonicity and concavity
         increasing,              decreasing,
         concave                  concave
         down                     down
                   II        I
                         .

                   III       IV
monotonicity and concavity
         increasing,             decreasing,
         concave                 concave
         down                    down
                   II       I
                        .

                  III       IV
         decreasing,
         concave
         up
monotonicity and concavity
         increasing,             decreasing,
         concave                 concave
         down                    down
                   II       I
                        .

                  III       IV
         decreasing,             increasing,
         concave                 concave
         up                      up
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
               7  −61/2 −20          f(x)
              −1   1/2   2           shape of f
              max   IP  min
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
               7  −61/2 −20          f(x)
              −1   1/2   2           shape of f
              max   IP  min
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
               7  −61/2 −20          f(x)
              −1   1/2   2           shape of f
              max   IP  min
Step 3: One sign chart to rule them all
 Remember, f(x) = 2x3 − 3x2 − 12x.

             +  −.  −   +            f′ (x)
            ↗−1 ↘   ↘ 2 ↗            monotonicity
            −− −− ++    ++           f′′ (x)
            ⌢ ⌢ 1/2 ⌣   ⌣            concavity
               7  −61/2 −20          f(x)
              −1   1/2   2           shape of f
              max   IP  min
f(x)
Step 4: Graph
       f(x) = 2x3 − 3x2 − 12x
       ( √       ) (−1, 7)
        3− 105
           4   ,0            (0, 0)
                           .                  ( x√         )
                               (1/2, −61/2)
                                               3+ 105
                                                 4    ,0
                                 (2, −20)

                      7  −61/2 −20              f(x)
                     −1   1/2   2               shape of f
                     max   IP  min
f(x)
Step 4: Graph
       f(x) = 2x3 − 3x2 − 12x
       ( √       ) (−1, 7)
        3− 105
           4   ,0            (0, 0)
                           .                  ( x√         )
                               (1/2, −61/2)
                                               3+ 105
                                                 4    ,0
                                 (2, −20)

                      7  −61/2 −20              f(x)
                     −1   1/2   2               shape of f
                     max   IP  min
f(x)
Step 4: Graph
       f(x) = 2x3 − 3x2 − 12x
       ( √       ) (−1, 7)
        3− 105
           4   ,0            (0, 0)
                           .                  ( x√         )
                               (1/2, −61/2)
                                               3+ 105
                                                 4    ,0
                                 (2, −20)

                      7  −61/2 −20              f(x)
                     −1   1/2   2               shape of f
                     max   IP  min
f(x)
Step 4: Graph
       f(x) = 2x3 − 3x2 − 12x
       ( √       ) (−1, 7)
        3− 105
           4   ,0            (0, 0)
                           .                  ( x√         )
                               (1/2, −61/2)
                                               3+ 105
                                                 4    ,0
                                 (2, −20)

                      7  −61/2 −20              f(x)
                     −1   1/2   2               shape of f
                     max   IP  min
f(x)
Step 4: Graph
       f(x) = 2x3 − 3x2 − 12x
       ( √       ) (−1, 7)
        3− 105
           4   ,0            (0, 0)
                           .                  ( x√         )
                               (1/2, −61/2)
                                               3+ 105
                                                 4    ,0
                                 (2, −20)

                      7  −61/2 −20              f(x)
                     −1   1/2   2               shape of f
                     max   IP  min
Graphing a quartic

 Example
 Graph f(x) = x4 − 4x3 + 10
Graphing a quartic

 Example
 Graph f(x) = x4 − 4x3 + 10
 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many
                                 x→±∞
 other points on the graph are evident.
Step 1: Monotonicity
            f(x) = x4 − 4x3 + 10
        =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.

                       .
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                      0.                 4x2
                      0
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0.                   4x2
                    0
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0.      +
                                         4x2
                    0
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0.      +        +
                                         4x2
                    0
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0.      +          +
                                           4x2
                    0
                                   0
                                           (x − 3)
                                   3
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +          +
                                           4x2
                     0
                   −               0
                                           (x − 3)
                                   3
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +          +
                                           4x2
                     0
                   −        −      0
                                           (x − 3)
                                   3
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                      (x − 3)
                                   3
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                      (x − 3)
                                   3  f′ (x)
                      0            0
                      0            3  f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                      (x − 3)
                                   3  f′ (x)
                   −0              0
                    0              3  f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                      (x − 3)
                                   3  f′ (x)
                   −0       −      0
                    0              3  f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                       (x − 3)
                                   3    ′
                   −0       −      0 + f (x)
                    0              3   f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                       (x − 3)
                                   3    ′
                   −0       −      0 + f (x)
                   ↘0              3   f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                       (x − 3)
                                   3    ′
                   −0       −      0 + f (x)
                   ↘0       ↘      3   f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                       (x − 3)
                                   3    ′
                   −0       −      0 + f (x)
                   ↘0       ↘      3 ↗ f(x)
Step 1: Monotonicity
                    f(x) = x4 − 4x3 + 10
                =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
 We make its sign chart.
                   +0 .     +        +
                                         4x2
                     0
                   −        −      0+
                                       (x − 3)
                                   3    ′
                   −0       −      0 + f (x)
                   ↘0       ↘      3 ↗ f(x)
                                  min
Step 2: Concavity
            f′ (x) = 4x3 − 12x2
        =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)


               .
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:

                           .
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                           0
                           .               12x
                           0
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0
                        .                  12x
                        0
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0
                        .   +
                                           12x
                        0
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0
                        .   +        +
                                           12x
                        0
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0
                        .   +        +
                                           12x
                        0
                                 0
                                           x−2
                                 2
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −         0
                                           x−2
                                 2
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −   0
                                           x−2
                                 2
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −   0   +
                                           x−2
                                 2
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.     +       +
                                           12x
                         0
                       −       −   0   +
                                           x−2
                                   2       f′′ (x)
                           0       0
                           0       2       f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −   0   +
                                           x−2
                                 2         f′′ (x)
                      ++0        0
                        0        2         f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0       +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0
                        0    2             f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0 +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0 ++
                        0    2             f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0 +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0 ++
                      ⌣0     2             f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0 +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0 ++
                      ⌣0 ⌢ 2               f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0 +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0 ++
                      ⌣0 ⌢ 2 ⌣             f(x)
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −
                             0 +
                                           x−2
                             2             f′′ (x)
                      ++0 −− 0 ++
                      ⌣0 ⌢ 2 ⌣             f(x)
                        IP
Step 2: Concavity
                     f′ (x) = 4x3 − 12x2
                 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2)
 Here is its sign chart:
                       −0.   +       +
                                           12x
                         0
                       −     −0 +
                                           x−2
                              2            f′′ (x)
                      ++0 −− 0 ++
                      ⌣0 ⌢ 2 ⌣             f(x)
                        IP   IP
Step 3: Grand Unified Sign Chart
                    .
 Remember, f(x) = x − 4x3 + 10.
                   4



                −0 −     −0+      f′ (x)
                ↘0 ↘     ↘3↗      monotonicity
                                  f′′ (x)
                ++0 −− 0++ ++
                ⌣0 ⌢ 2⌣ ⌣         concavity
                  10   −6 −17     f(x)
                   0    2 3       shape
                  IP   IP min
Step 3: Grand Unified Sign Chart
                    .
 Remember, f(x) = x − 4x3 + 10.
                   4



                −0 −     −0+      f′ (x)
                ↘0 ↘     ↘3↗      monotonicity
                                  f′′ (x)
                ++0 −− 0++ ++
                ⌣0 ⌢ 2⌣ ⌣         concavity
                  10   −6 −17     f(x)
                   0    2 3       shape
                  IP   IP min
Step 3: Grand Unified Sign Chart
                    .
 Remember, f(x) = x − 4x3 + 10.
                   4



                −0 −     −0+      f′ (x)
                ↘0 ↘     ↘3↗      monotonicity
                                  f′′ (x)
                ++0 −− 0++ ++
                ⌣0 ⌢ 2⌣ ⌣         concavity
                  10   −6 −17     f(x)
                   0    2 3       shape
                  IP   IP min
Step 3: Grand Unified Sign Chart
                    .
 Remember, f(x) = x − 4x3 + 10.
                   4



                −0 −     −0+      f′ (x)
                ↘0 ↘     ↘3↗      monotonicity
                                  f′′ (x)
                ++0 −− 0++ ++
                ⌣0 ⌢ 2⌣ ⌣         concavity
                  10   −6 −17     f(x)
                   0    2 3       shape
                  IP   IP min
Step 3: Grand Unified Sign Chart
                    .
 Remember, f(x) = x − 4x3 + 10.
                   4



                −0 −     −0+      f′ (x)
                ↘0 ↘     ↘3↗      monotonicity
                                  f′′ (x)
                ++0 −− 0++ ++
                ⌣0 ⌢ 2⌣ ⌣         concavity
                  10   −6 −17     f(x)
                   0    2 3       shape
                  IP   IP min
y
Step 4: Graph

     f(x) = x4 − 4x3 + 10

                (0, 10)
                          .                      x
                              (2, −6)
                                      (3, −17)
                       10           −6 −17       f(x)
                        0            2 3         shape
                       IP           IP min
y
Step 4: Graph

     f(x) = x4 − 4x3 + 10

                (0, 10)
                          .                      x
                              (2, −6)
                                      (3, −17)
                       10           −6 −17       f(x)
                        0            2 3         shape
                       IP           IP min
y
Step 4: Graph

     f(x) = x4 − 4x3 + 10

                (0, 10)
                          .                      x
                              (2, −6)
                                      (3, −17)
                       10           −6 −17       f(x)
                        0            2 3         shape
                       IP           IP min
y
Step 4: Graph

     f(x) = x4 − 4x3 + 10

                (0, 10)
                          .                      x
                              (2, −6)
                                      (3, −17)
                       10           −6 −17       f(x)
                        0            2 3         shape
                       IP           IP min
y
Step 4: Graph

     f(x) = x4 − 4x3 + 10

                (0, 10)
                          .                      x
                              (2, −6)
                                      (3, −17)
                       10           −6 −17       f(x)
                        0            2 3         shape
                       IP           IP min
Outline
 Simple examples
    A cubic func on
    A quar c func on

 More Examples
   Points of nondifferen ability
   Horizontal asymptotes
   Ver cal asymptotes
   Trigonometric and polynomial together
   Logarithmic
Graphing a function with a cusp

 Example
                    √
 Graph f(x) = x +       |x|
Graphing a function with a cusp

 Example
                    √
 Graph f(x) = x +       |x|
 This func on looks strange because of the absolute value. But
 whenever we become nervous, we can just take cases.
Step 0: Finding Zeroes
              √
 f(x) = x +       |x|
     First, look at f by itself. We can tell that f(0) = 0 and that
     f(x) > 0 if x is posi ve.
Step 0: Finding Zeroes
              √
 f(x) = x +       |x|
     First, look at f by itself. We can tell that f(0) = 0 and that
     f(x) > 0 if x is posi ve.
     Are there nega ve numbers which are zeroes for f?
Step 0: Finding Zeroes
              √
 f(x) = x +       |x|
     First, look at f by itself. We can tell that f(0) = 0 and that
     f(x) > 0 if x is posi ve.
     Are there nega ve numbers which are zeroes for f?
                            √                 √
                       x + −x = 0 =⇒ −x = −x
                               −x = x2 =⇒ x2 + x = 0

     The only solu ons are x = 0 and x = −1.
Step 0: Asymptotic behavior
      √
 f(x) = x + |x|
       lim f(x) = ∞, because both terms tend to ∞.
     x→∞
Step 0: Asymptotic behavior
      √
 f(x) = x + |x|
       lim f(x) = ∞, because both terms tend to ∞.
     x→∞
      lim f(x) is indeterminate of the form −∞ + ∞. It’s the same
     x→−∞            √
     as lim (−y + y)
        y→+∞
Step 0: Asymptotic behavior
      √
 f(x) = x + |x|
       lim f(x) = ∞, because both terms tend to ∞.
     x→∞
      lim f(x) is indeterminate of the form −∞ + ∞. It’s the same
     x→−∞            √
     as lim (−y + y)
        y→+∞
                                                    √
                            √             √          y+y
                lim (−y +       y) = lim ( y − y) · √
               y→+∞                  y→∞             y+y
                                          y − y2
                                   = lim √       = −∞
                                     y→∞    y+y
Step 1: The derivative
                          √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                              d (  √ )    1
                   f′ (x) =      x+ x =1+ √
                              dx         2 x
Step 1: The derivative
                          √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                              d (  √ )    1
                   f′ (x) =      x+ x =1+ √
                              dx         2 x
 No ce
     f′ (x) > 0 when x > 0 (so no cri cal points here)
Step 1: The derivative
                          √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                              d (  √ )    1
                   f′ (x) =      x+ x =1+ √
                              dx         2 x
 No ce
     f′ (x) > 0 when x > 0 (so no cri cal points here)
      lim+ f′ (x) = ∞ (so 0 is a cri cal point)
     x→0
Step 1: The derivative
                          √
 Remember, f(x) = x + |x|.
 To find f′ , first assume x > 0. Then
                              d (  √ )    1
                   f′ (x) =      x+ x =1+ √
                              dx         2 x
 No ce
     f′ (x) > 0 when x > 0 (so no cri cal points here)
      lim+ f′ (x) = ∞ (so 0 is a cri cal point)
     x→0
      lim f′ (x) = 1 (so the graph is asympto c to a line of slope 1)
     x→∞
Step 1: The derivative
            √
 Remember, f(x) = x + |x|.
 If x is nega ve, we have
                           d (    √ )        1
                  f′ (x) =     x + −x = 1 − √
                           dx              2 −x
 No ce
     lim− f′ (x) = −∞ (other side of the cri cal point)
     x→0
Step 1: The derivative
            √
 Remember, f(x) = x + |x|.
 If x is nega ve, we have
                           d (    √ )        1
                  f′ (x) =     x + −x = 1 − √
                           dx              2 −x
 No ce
     lim− f′ (x) = −∞ (other side of the cri cal point)
     x→0
       lim f′ (x) = 1 (asympto c to a line of slope 1)
     x→−∞
Step 1: The derivative
            √
 Remember, f(x) = x + |x|.
 If x is nega ve, we have
                           d (    √ )        1
                  f′ (x) =     x + −x = 1 − √
                           dx              2 −x
 No ce
     lim− f′ (x) = −∞ (other side of the cri cal point)
     x→0
       lim f′ (x) = 1 (asympto c to a line of slope 1)
     x→−∞
      ′
     f (x) = 0 when
          1        √     1         1          1
      1− √   = 0 =⇒ −x =   =⇒ −x =   =⇒ x = −
        2 −x             2         4          4
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                                                     f′ (x)
                                 .
                                                     f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                            0                        f′ (x)
                                 .
                           −1
                            4
                                                     f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                            0    ∞                   f′ (x)
                                  .
                           −1
                            4
                                 0                   f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       +    0    ∞                   f′ (x)
                                  .
                           −1
                            4
                                 0                   f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       +   0− ∞                      f′ (x)
                               .
                           −4 0
                            1                        f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       +   0− ∞           +          f′ (x)
                               .
                           −4 0
                            1                        f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       + 0− ∞             +          f′ (x)
                             .
                       ↗ −4 0
                          1                          f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       + 0− ∞             +          f′ (x)
                              .
                       ↗ −4
                          1↘ 0                       f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       + 0− ∞             +          f′ (x)
                              .
                       ↗ −4
                          1↘ 0            ↗          f(x)
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       + 0− ∞             +          f′ (x)
                               .
                       ↗ −41↘ 0           ↗          f(x)
                         max
Step 1: Monotonicity
                                   1
                            1 + √
                                          if x > 0
                     ′
                    f (x) =        2 x
                            1 − √   1
                                          if x < 0
                                   2 −x
  We can’t make a mul -factor sign chart because of the absolute
 value, but we can test points in between cri cal points.

                       + 0− ∞             +          f′ (x)
                               .
                       ↗ −41↘ 0           ↗          f(x)
                         max min
Step 2: Concavity
              (                            )
                            d     1               1
   If x > 0, then f′′ (x) =    1 + x−1/2       = − x−3/2 This is
                            dx    2               4
   nega ve whenever x > 0.
Step 2: Concavity
              (                           )
                            d      1 −1/2       1
   If x > 0, then f′′ (x) =     1+ x        = − x−3/2 This is
                            dx     2            4
   nega ve whenever x > 0.     (              )
                   ′′       d      1     −1/2      1
   If x < 0, then f (x) =       1 − (−x)        = − (−x)−3/2
                            dx     2               4
   which is also always nega ve for nega ve x.
Step 2: Concavity
              (                            )
                            d       1 −1/2       1
   If x > 0, then f′′ (x) =      1+ x        = − x−3/2 This is
                            dx      2            4
   nega ve whenever x > 0.     (               )
                   ′′       d       1     −1/2      1
   If x < 0, then f (x) =        1 − (−x)        = − (−x)−3/2
                            dx      2               4
   which is also always nega ve for nega ve x.
                                1
   In other words, f′′ (x) = − |x|−3/2 .
                                4
Step 2: Concavity
              (                              )
                              d       1 −1/2       1
     If x > 0, then f′′ (x) =      1+ x        = − x−3/2 This is
                              dx      2            4
     nega ve whenever x > 0.     (               )
                     ′′       d       1     −1/2      1
     If x < 0, then f (x) =        1 − (−x)        = − (−x)−3/2
                              dx      2               4
     which is also always nega ve for nega ve x.
                                  1
     In other words, f′′ (x) = − |x|−3/2 .
                                  4
 Here is the sign chart:

                      −−       −∞        −−          f′′ (x)
                                 .
                      ⌢         0        ⌢           f(x)
Step 3: Synthesis
 Now we can put these things together.
                                    √
                         f(x) = x + |x|

    +1             + 0− ∞           +       f′
                                          +1 (x)
                            .
     ↗            ↗     1↘ 0       ↗       ↗monotonicity
    −∞            −− − −−
                        4 −∞       −−       f′′
                                          −∞ (x)
     ⌢            ⌢ 1 ⌢0           ⌢       ⌢concavity
    −∞ 0              4    0              +∞f(x)
        −1           −4 0
                        1                   shape
       zero          max min
Step 3: Synthesis
 Now we can put these things together.
                                    √
                         f(x) = x + |x|

    +1             + 0− ∞           +       f′
                                          +1 (x)
                            .
     ↗            ↗     1↘ 0       ↗       ↗monotonicity
    −∞            −− − −−
                        4 −∞       −−       f′′
                                          −∞ (x)
     ⌢            ⌢ 1 ⌢0           ⌢       ⌢concavity
    −∞ 0              4    0              +∞f(x)
        −1           −4 0
                        1                   shape
       zero          max min
Step 3: Synthesis
 Now we can put these things together.
                                    √
                         f(x) = x + |x|

    +1             + 0− ∞           +       f′
                                          +1 (x)
                            .
     ↗            ↗     1↘ 0       ↗       ↗monotonicity
    −∞            −− − −−
                        4 −∞       −−       f′′
                                          −∞ (x)
     ⌢            ⌢ 1 ⌢0           ⌢       ⌢concavity
    −∞ 0              4    0              +∞f(x)
        −1           −4 0
                        1                   shape
       zero          max min
Step 3: Synthesis
 Now we can put these things together.
                                    √
                         f(x) = x + |x|

    +1             + 0− ∞           +       f′
                                          +1 (x)
                            .
     ↗            ↗     1↘ 0       ↗       ↗monotonicity
    −∞            −− − −−
                        4 −∞       −−       f′′
                                          −∞ (x)
     ⌢            ⌢ 1 ⌢0           ⌢       ⌢concavity
    −∞ 0              4    0              +∞f(x)
        −1           −4 0
                        1                   shape
       zero          max min
Step 3: Synthesis
 Now we can put these things together.
                                    √
                         f(x) = x + |x|

    +1             + 0− ∞           +       f′
                                          +1 (x)
                            .
     ↗            ↗     1↘ 0       ↗       ↗monotonicity
    −∞            −− − −−
                        4 −∞       −−       f′′
                                          −∞ (x)
     ⌢            ⌢ 1 ⌢0           ⌢       ⌢concavity
    −∞ 0              4    0              +∞f(x)
        −1           −4 0
                        1                   shape
       zero          max min
Graph
                             √
                f(x) = x +       |x|



                       .                   x

                  1
        −∞0       4  0                 +∞ x
          −1    −1 0                      shape
                  4
         zero   max min
Graph
                               √
                  f(x) = x +       |x|


        (−1, 0)
                         .                   x

                    1
        −∞0         4  0                 +∞ x
          −1      −1 0                      shape
                    4
         zero     max min
Graph
                                   √
                  f(x) = x +           |x|


                  (− 1 , 1 )
                     4 4
        (−1, 0)
                               .                 x

                      1
        −∞0           4  0                   +∞ x
          −1        −1 0                        shape
                      4
         zero       max min
Graph
                                     √
                  f(x) = x +             |x|


                  (− 1 , 1 )
                     4 4
        (−1, 0)
                               .                   x
                                   (0, 0)
                      1
        −∞0           4  0                     +∞ x
          −1        −1 0                          shape
                      4
         zero       max min
Graph
                                     √
                  f(x) = x +             |x|


                  (− 1 , 1 )
                     4 4
        (−1, 0)
                               .                   x
                                   (0, 0)
                      1
        −∞0           4  0                     +∞ x
          −1        −1 0                          shape
                      4
         zero       max min
Graph
                                     √
                  f(x) = x +             |x|


                  (− 1 , 1 )
                     4 4
        (−1, 0)
                               .                   x
                                   (0, 0)
                      1
        −∞0           4  0                     +∞ x
          −1        −1 0                          shape
                      4
         zero       max min
Graph
                                     √
                  f(x) = x +             |x|


                  (− 1 , 1 )
                     4 4
        (−1, 0)
                               .                   x
                                   (0, 0)
                      1
        −∞0           4  0                     +∞ x
          −1        −1 0                          shape
                      4
         zero       max min
Example with Horizontal
Asymptotes

 Example
 Graph f(x) = xe−x
                 2
Example with Horizontal
Asymptotes

 Example
 Graph f(x) = xe−x
                   2




 Before taking deriva ves, we no ce that f is odd, that f(0) = 0, and
 lim f(x) = 0
 x→∞
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                                       . √0              √
                                                  1−         2x
                               0           1/2
                                                        √
                              √                   1 + 2x
                             − 0 1/2      0       f′ (x)
                              √          √
                             − 1/2         1/2    f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      . √0              √
                                                  1−         2x
                               0           1/2
                                                        √
                              √                   1 + 2x
                             − 0 1/2      0       f′ (x)
                              √          √
                             − 1/2         1/2    f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √              √
                                                  1−         2x
                               0            1/2
                                                        √
                              √                   1 + 2x
                             − 0 1/2       0      f′ (x)
                              √           √
                             − 1/2          1/2   f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √       −          √
                                                      1−         2x
                               0            1/2
                                                            √
                              √                       1 + 2x
                             − 0 1/2       0          f′ (x)
                              √           √
                             − 1/2          1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √       −          √
                                                      1−         2x
                −              0            1/2
                                                            √
                              √                       1 + 2x
                             − 0 1/2       0          f′ (x)
                              √           √
                             − 1/2          1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √       −          √
                                                      1−         2x
                −              0       +    1/2
                                                            √
                              √                       1 + 2x
                             − 0 1/2       0          f′ (x)
                              √           √
                             − 1/2          1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √       −          √
                                                      1−         2x
                −              0       +    1/2
                                                  +         √
                              √                       1 + 2x
                             − 0 1/2       0          f′ (x)
                              √           √
                             − 1/2          1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                      + 0
                                        . √       −          √
                                                      1−         2x
                −              0       +    1/2
                                                  +         √
                              √                       1 + 2x
                −            − 0 1/2       0          f′ (x)
                              √           √
                             − 1/2          1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                  + 0
                                    . √       −          √
                                                  1−         2x
                −              0   +    1/2
                                              +         √
                               √                  1 + 2x
                −            − 0 1/2 + 0          f′ (x)
                               √      √
                             −   1/2    1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                  + 0
                                    . √       −          √
                                                  1−         2x
                −              0   +    1/2
                                              +         √
                               √                  1 + 2x
                −            − 0 1/2 + 0      −   f′ (x)
                               √      √
                ↘            −   1/2    1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                   + 0
                                     . √       −          √
                                                   1−         2x
                −              0    +    1/2
                                               +         √
                               √                   1 + 2x
                −            − 0 1/2 + 0       −   f′ (x)
                               √       √
                ↘            −   1/2 ↗   1/2       f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                   + 0
                                     . √       −          √
                                                   1−         2x
                −              0    +    1/2
                                               +         √
                               √                   1 + 2x
                −            − 0 1/2 + 0       −   f′ (x)
                               √       √
                ↘            −   1/2 ↗   1/2   ↘   f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                   + 0
                                     . √       −          √
                                                   1−         2x
                −              0    +    1/2
                                               +         √
                               √                   1 + 2x
                −            − 0 1/2 + 0       −   f′ (x)
                               √       √
                ↘            −   1/2 ↗   1/2   ↘   f(x)
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                   + 0
                                     . √       −          √
                                                   1−         2x
                −              0    +    1/2
                                               +         √
                               √                   1 + 2x
                −            − 0 1/2 + 0       −   f′ (x)
                               √       √
                ↘            −   1/2 ↗   1/2   ↘   f(x)
                              min
Step 1: −xMonotonicity
                2
 If f(x) = xe       , then
                                           (       ) 2
            f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x
                            2      2

                     (     √ )(       √ ) −x2
                   = 1 − 2x 1 + 2x e

                +                   + 0
                                     . √       −          √
                                                   1−         2x
                −              0    +    1/2
                                               +         √
                               √                   1 + 2x
                −            − 0 1/2 + 0       −   f′ (x)
                               √       √
                ↘            −   1/2 ↗   1/2   ↘   f(x)
                              min      max
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




                                0.              2x
                                0
                                          0     √       √
                                         √          2x − 3
                   0                      3/2
                                                √       √
                  √                                 2x + 3
                 − 0 3/2        0         0     f′′ (x)
                  √                      √
                 − 3/2          0         3/2   f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −                  0.              2x
                                0
                                          0     √       √
                                         √          2x − 3
                   0                      3/2
                                                √       √
                  √                                 2x + 3
                 − 0 3/2        0         0     f′′ (x)
                  √                      √
                 − 3/2          0         3/2   f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.              2x
                                0
                                          0     √       √
                                         √          2x − 3
                   0                      3/2
                                                √       √
                  √                                 2x + 3
                 − 0 3/2        0         0     f′′ (x)
                  √                      √
                 − 3/2          0         3/2   f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +
                                                2x
                                0
                                          0     √       √
                                         √          2x − 3
                   0                      3/2
                                                √       √
                  √                                 2x + 3
                 − 0 3/2        0         0     f′′ (x)
                  √                      √
                 − 3/2          0         3/2   f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
                                          0         √       √
                                         √              2x − 3
                   0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
             −                            0         √       √
                                         √              2x − 3
                   0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
             −             −              0         √       √
                                         √              2x − 3
                   0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
             −             −         −    0         √       √
                                         √              2x − 3
                   0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
             −             −         −    0   +     √       √
                                         √              2x − 3
                   0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −             −    0.   +          +
                                                    2x
                                0
             −             −         −    0   +     √       √
                                         √              2x − 3
             −     0                      3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +          +
                                                    2x
                                0
             −           −           −    0   +     √       √
                                         √              2x − 3
             −     0 +                    3/2
                                                    √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +          +
                                                    2x
                                0
             −           −           − 0   +        √       √
                                      √                 2x − 3
             −     0 +               + 3/2          √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +          +
                                                    2x
                                0
             −           −           − 0   +        √       √
                                      √                 2x − 3
             −     0 +               + 3/2 +        √       √
                  √                                     2x + 3
                 − 0 3/2        0         0         f′′ (x)
                  √                      √
                 − 3/2          0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +          +
                                                    2x
                                0
             −           −           − 0   +        √       √
                                      √                 2x − 3
             −   0 +                 + 3/2 +        √       √
                √                                       2x + 3
            −− − 0 3/2          0         0         f′′ (x)
                √                        √
               − 3/2            0         3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +          +
                                                    2x
                                0
             −           −           − 0   +        √       √
                                      √                 2x − 3
             −   0 +                 + 3/2 +        √       √
                √                                       2x + 3
            −− − 0 3/2
                     ++ 0                 0         f′′ (x)
                √                        √
               − 3/2    0                 3/2       f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0                  f′′ (x)
                √           √
               − 3/2    0    3/2                f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √           √
               − 3/2    0    3/2                f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2    0    3/2                f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2    0 ⌢ 3/2                 f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2    0 ⌢ 3/2 ⌣               f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −   0 +                 + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2    0 ⌢ 3/2 ⌣               f(x)
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −    0 +                + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2    0 ⌢ 3/2 ⌣               f(x)
                 IP
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −    0 +                + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2     0 ⌢ 3/2 ⌣              f(x)
                 IP     IP
Step 2: Concavity
   ′     2 −x            2
 If f (x) = (1 − 2x )e       , we know
                                               (        ) 2
     f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x
                       2               2



           = 2x(2x2 − 3)e−x
                                 2




             −           −      0.   +    +
                                                2x
                                0
             −           −           − 0   +    √       √
                                      √             2x − 3
             −    0 +                + 3/2 +    √       √
                √                                   2x + 3
            −− − 0 3/2
                     ++ 0 −− 0 ++               f′′ (x)
            ⌢   √ ⌣         √
               − 3/2     0 ⌢ 3/2 ⌣              f(x)
                 IP     IP   IP
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)

More Related Content

What's hot

Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
[4] num integration
[4] num integration[4] num integration
[4] num integrationikhulsys
 
Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )fdjouhana
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functionstimschmitz
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notesAhmed Tayeh
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating LimitsMatthew Leingang
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function PresentationRyanWatt
 
Difrentiation
DifrentiationDifrentiation
Difrentiationlecturer
 

What's hot (17)

Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
Sect3 7
Sect3 7Sect3 7
Sect3 7
 
[4] num integration
[4] num integration[4] num integration
[4] num integration
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Calculus Final Exam
Calculus Final ExamCalculus Final Exam
Calculus Final Exam
 
Lesson 22: Graphing
Lesson 22: GraphingLesson 22: Graphing
Lesson 22: Graphing
 
Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )Matematika Kalkulus ( Limit )
Matematika Kalkulus ( Limit )
 
Higher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and FunctionsHigher Maths 1.2.1 - Sets and Functions
Higher Maths 1.2.1 - Sets and Functions
 
138191 rvsp lecture notes
138191 rvsp lecture notes138191 rvsp lecture notes
138191 rvsp lecture notes
 
Lesson 4: Calculating Limits
Lesson 4: Calculating LimitsLesson 4: Calculating Limits
Lesson 4: Calculating Limits
 
Ism et chapter_3
Ism et chapter_3Ism et chapter_3
Ism et chapter_3
 
Quadratic Function Presentation
Quadratic Function PresentationQuadratic Function Presentation
Quadratic Function Presentation
 
Limits
LimitsLimits
Limits
 
Difrentiation
DifrentiationDifrentiation
Difrentiation
 
整卷
整卷整卷
整卷
 
Ex algebra (5)
Ex algebra  (5)Ex algebra  (5)
Ex algebra (5)
 
Integration
IntegrationIntegration
Integration
 

Viewers also liked

Chemistry - Chp 1 - Introduction To Chemistry - PowerPoint
Chemistry - Chp 1 - Introduction To Chemistry - PowerPointChemistry - Chp 1 - Introduction To Chemistry - PowerPoint
Chemistry - Chp 1 - Introduction To Chemistry - PowerPointMel Anthony Pepito
 
Chemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeChemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeMel Anthony Pepito
 
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointChemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointMel Anthony Pepito
 
Biology - Chp 21 - Fungi - PowerPoint
Biology - Chp 21 - Fungi - PowerPointBiology - Chp 21 - Fungi - PowerPoint
Biology - Chp 21 - Fungi - PowerPointMel Anthony Pepito
 
Chemistry - Chp 3 - Scientific Measurement - PowerPoint
Chemistry - Chp 3 - Scientific Measurement - PowerPointChemistry - Chp 3 - Scientific Measurement - PowerPoint
Chemistry - Chp 3 - Scientific Measurement - PowerPointMel Anthony Pepito
 
Biology - Chp 17 - History Of Life - PowerPoint
Biology - Chp 17 - History Of Life - PowerPointBiology - Chp 17 - History Of Life - PowerPoint
Biology - Chp 17 - History Of Life - PowerPointMel Anthony Pepito
 
Biology - Chp 1 - Biology The Study Of Life - PowerPoint
Biology - Chp 1 - Biology The Study Of Life - PowerPointBiology - Chp 1 - Biology The Study Of Life - PowerPoint
Biology - Chp 1 - Biology The Study Of Life - PowerPointMel Anthony Pepito
 
Chemistry - Chp 16 - Solutions - PowerPoint (shortened)
Chemistry - Chp 16 - Solutions - PowerPoint (shortened) Chemistry - Chp 16 - Solutions - PowerPoint (shortened)
Chemistry - Chp 16 - Solutions - PowerPoint (shortened) Mel Anthony Pepito
 
Chemistry - Chp 5 - Electrons In Atoms - Powerpoint
Chemistry - Chp 5 - Electrons In Atoms - PowerpointChemistry - Chp 5 - Electrons In Atoms - Powerpoint
Chemistry - Chp 5 - Electrons In Atoms - PowerpointMel Anthony Pepito
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Mel Anthony Pepito
 
Life Science Chapter 2 The Cell
Life Science Chapter 2 The CellLife Science Chapter 2 The Cell
Life Science Chapter 2 The CellMel Anthony Pepito
 
Chapter 2 Notes - Student Handout
Chapter 2 Notes - Student HandoutChapter 2 Notes - Student Handout
Chapter 2 Notes - Student HandoutKendon Smith
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointMel Anthony Pepito
 
6-11 Evaluating Expressions with Decimals
6-11 Evaluating Expressions with Decimals6-11 Evaluating Expressions with Decimals
6-11 Evaluating Expressions with DecimalsMel Anthony Pepito
 
7-11 Fractions Greater Than One
7-11 Fractions Greater Than One7-11 Fractions Greater Than One
7-11 Fractions Greater Than OneMel Anthony Pepito
 
Biology - Chp 3 - The Biosphere - PowerPoint
Biology - Chp 3 - The Biosphere - PowerPointBiology - Chp 3 - The Biosphere - PowerPoint
Biology - Chp 3 - The Biosphere - PowerPointMel Anthony Pepito
 
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointChemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointMel Anthony Pepito
 
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPoint
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPointBiology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPoint
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPointMel Anthony Pepito
 
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointChemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointMel Anthony Pepito
 

Viewers also liked (20)

Chemistry - Chp 1 - Introduction To Chemistry - PowerPoint
Chemistry - Chp 1 - Introduction To Chemistry - PowerPointChemistry - Chp 1 - Introduction To Chemistry - PowerPoint
Chemistry - Chp 1 - Introduction To Chemistry - PowerPoint
 
Chemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and changeChemistry - Chapter 2 matter and change
Chemistry - Chapter 2 matter and change
 
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPointChemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
Chemistry - Chp 6 - The Periodic Table Revisited - PowerPoint
 
Biology - Chp 21 - Fungi - PowerPoint
Biology - Chp 21 - Fungi - PowerPointBiology - Chp 21 - Fungi - PowerPoint
Biology - Chp 21 - Fungi - PowerPoint
 
Chemistry - Chp 3 - Scientific Measurement - PowerPoint
Chemistry - Chp 3 - Scientific Measurement - PowerPointChemistry - Chp 3 - Scientific Measurement - PowerPoint
Chemistry - Chp 3 - Scientific Measurement - PowerPoint
 
Biology - Chp 17 - History Of Life - PowerPoint
Biology - Chp 17 - History Of Life - PowerPointBiology - Chp 17 - History Of Life - PowerPoint
Biology - Chp 17 - History Of Life - PowerPoint
 
Biology - Chp 1 - Biology The Study Of Life - PowerPoint
Biology - Chp 1 - Biology The Study Of Life - PowerPointBiology - Chp 1 - Biology The Study Of Life - PowerPoint
Biology - Chp 1 - Biology The Study Of Life - PowerPoint
 
Chemistry - Chp 16 - Solutions - PowerPoint (shortened)
Chemistry - Chp 16 - Solutions - PowerPoint (shortened) Chemistry - Chp 16 - Solutions - PowerPoint (shortened)
Chemistry - Chp 16 - Solutions - PowerPoint (shortened)
 
Chemistry - Chp 5 - Electrons In Atoms - Powerpoint
Chemistry - Chp 5 - Electrons In Atoms - PowerpointChemistry - Chp 5 - Electrons In Atoms - Powerpoint
Chemistry - Chp 5 - Electrons In Atoms - Powerpoint
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Life Science Chapter 2 The Cell
Life Science Chapter 2 The CellLife Science Chapter 2 The Cell
Life Science Chapter 2 The Cell
 
Chapter 2 Notes - Student Handout
Chapter 2 Notes - Student HandoutChapter 2 Notes - Student Handout
Chapter 2 Notes - Student Handout
 
Synonyms
SynonymsSynonyms
Synonyms
 
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPointChemistry - Chp 8 - Covalent Bonding - PowerPoint
Chemistry - Chp 8 - Covalent Bonding - PowerPoint
 
6-11 Evaluating Expressions with Decimals
6-11 Evaluating Expressions with Decimals6-11 Evaluating Expressions with Decimals
6-11 Evaluating Expressions with Decimals
 
7-11 Fractions Greater Than One
7-11 Fractions Greater Than One7-11 Fractions Greater Than One
7-11 Fractions Greater Than One
 
Biology - Chp 3 - The Biosphere - PowerPoint
Biology - Chp 3 - The Biosphere - PowerPointBiology - Chp 3 - The Biosphere - PowerPoint
Biology - Chp 3 - The Biosphere - PowerPoint
 
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPointChemistry - Chp 10 - Chemical Quantities - PowerPoint
Chemistry - Chp 10 - Chemical Quantities - PowerPoint
 
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPoint
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPointBiology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPoint
Biology - Chp 2 - Hydrolysis And Dehydration Synthesis - PowerPoint
 
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPointChemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
Chemistry - Chp 7 - Ionic and Metallic Bonding - PowerPoint
 

Similar to Lesson 21: Curve Sketching (slides)

Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Kuan-Lun Wang
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Matthew Leingang
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normalscoburgmaths
 
f(x)-(x^2-1)-(x-2)Solution f(x) - (x^2 - 1)^3 f -'.docx
f(x)-(x^2-1)-(x-2)Solution                     f(x) - (x^2 - 1)^3 f -'.docxf(x)-(x^2-1)-(x-2)Solution                     f(x) - (x^2 - 1)^3 f -'.docx
f(x)-(x^2-1)-(x-2)Solution f(x) - (x^2 - 1)^3 f -'.docxjkristen1
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomialstimschmitz
 
Algebra 2 Unit 5 Lesson 2
Algebra 2 Unit 5 Lesson 2Algebra 2 Unit 5 Lesson 2
Algebra 2 Unit 5 Lesson 2Kate Nowak
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functionsdionesioable
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functionsdionesioable
 
limits and continuity
limits and continuitylimits and continuity
limits and continuityElias Dinsa
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivativesTarun Gehlot
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functionsdionesioable
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Reviewrfrettig
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomialsArvy Crescini
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005akabaka12
 
Lecture 03 special products and factoring
Lecture 03 special products and factoringLecture 03 special products and factoring
Lecture 03 special products and factoringHazel Joy Chong
 

Similar to Lesson 21: Curve Sketching (slides) (20)

Calculus First Test 2011/10/20
Calculus First Test 2011/10/20Calculus First Test 2011/10/20
Calculus First Test 2011/10/20
 
Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)Lesson 21: Curve Sketching (Section 4 version)
Lesson 21: Curve Sketching (Section 4 version)
 
F.Komposisi
F.KomposisiF.Komposisi
F.Komposisi
 
Equations of Tangents and Normals
Equations of Tangents and NormalsEquations of Tangents and Normals
Equations of Tangents and Normals
 
f(x)-(x^2-1)-(x-2)Solution f(x) - (x^2 - 1)^3 f -'.docx
f(x)-(x^2-1)-(x-2)Solution                     f(x) - (x^2 - 1)^3 f -'.docxf(x)-(x^2-1)-(x-2)Solution                     f(x) - (x^2 - 1)^3 f -'.docx
f(x)-(x^2-1)-(x-2)Solution f(x) - (x^2 - 1)^3 f -'.docx
 
Higher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - PolynomialsHigher Maths 2.1.1 - Polynomials
Higher Maths 2.1.1 - Polynomials
 
125 5.4
125 5.4125 5.4
125 5.4
 
Jackson d.e.v.
Jackson d.e.v.Jackson d.e.v.
Jackson d.e.v.
 
Algebra 2 Unit 5 Lesson 2
Algebra 2 Unit 5 Lesson 2Algebra 2 Unit 5 Lesson 2
Algebra 2 Unit 5 Lesson 2
 
Module 2 linear functions
Module 2   linear functionsModule 2   linear functions
Module 2 linear functions
 
Module 1 quadratic functions
Module 1   quadratic functionsModule 1   quadratic functions
Module 1 quadratic functions
 
limits and continuity
limits and continuitylimits and continuity
limits and continuity
 
Applications of derivatives
Applications of derivativesApplications of derivatives
Applications of derivatives
 
Module 3 quadratic functions
Module 3   quadratic functionsModule 3   quadratic functions
Module 3 quadratic functions
 
Function
FunctionFunction
Function
 
Unit 4 Review
Unit 4 ReviewUnit 4 Review
Unit 4 Review
 
Factoring polynomials
Factoring polynomialsFactoring polynomials
Factoring polynomials
 
Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005Emat 213 midterm 2 fall 2005
Emat 213 midterm 2 fall 2005
 
1st 2practice
1st 2practice1st 2practice
1st 2practice
 
Lecture 03 special products and factoring
Lecture 03 special products and factoringLecture 03 special products and factoring
Lecture 03 special products and factoring
 

More from Mel Anthony Pepito

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsMel Anthony Pepito
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationMel Anthony Pepito
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMel Anthony Pepito
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsMel Anthony Pepito
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsMel Anthony Pepito
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayMel Anthony Pepito
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleMel Anthony Pepito
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesMel Anthony Pepito
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremMel Anthony Pepito
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite IntegralMel Anthony Pepito
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesMel Anthony Pepito
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMel Anthony Pepito
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Mel Anthony Pepito
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionMel Anthony Pepito
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Mel Anthony Pepito
 

More from Mel Anthony Pepito (20)

Lesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric FunctionsLesson 16: Inverse Trigonometric Functions
Lesson 16: Inverse Trigonometric Functions
 
Lesson 11: Implicit Differentiation
Lesson 11: Implicit DifferentiationLesson 11: Implicit Differentiation
Lesson 11: Implicit Differentiation
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 13: Related Rates Problems
Lesson 13: Related Rates ProblemsLesson 13: Related Rates Problems
Lesson 13: Related Rates Problems
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential FunctionsLesson 14: Derivatives of Logarithmic and Exponential Functions
Lesson 14: Derivatives of Logarithmic and Exponential Functions
 
Lesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and DecayLesson 15: Exponential Growth and Decay
Lesson 15: Exponential Growth and Decay
 
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's RuleLesson 17: Indeterminate Forms and L'Hôpital's Rule
Lesson 17: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slidesLesson18 -maximum_and_minimum_values_slides
Lesson18 -maximum_and_minimum_values_slides
 
Lesson 19: The Mean Value Theorem
Lesson 19: The Mean Value TheoremLesson 19: The Mean Value Theorem
Lesson 19: The Mean Value Theorem
 
Lesson 25: The Definite Integral
Lesson 25: The Definite IntegralLesson 25: The Definite Integral
Lesson 25: The Definite Integral
 
Lesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slidesLesson22 -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
Lesson 23: Antiderivatives
Lesson 23: AntiderivativesLesson 23: Antiderivatives
Lesson 23: Antiderivatives
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus Lesson 27: The Fundamental Theorem of Calculus
Lesson 27: The Fundamental Theorem of Calculus
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 28: Integration by Subsitution
Lesson 28: Integration by SubsitutionLesson 28: Integration by Subsitution
Lesson 28: Integration by Subsitution
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)Lesson 3: Limits (Section 21 slides)
Lesson 3: Limits (Section 21 slides)
 

Lesson 21: Curve Sketching (slides)

  • 1. Sec on 4.4 Curve Sketching V63.0121.001: Calculus I Professor Ma hew Leingang New York University April 13, 2011 .
  • 2. Announcements Quiz 4 on Sec ons 3.3, 3.4, 3.5, and 3.7 this week (April 14/15) Quiz 5 on Sec ons 4.1–4.4 April 28/29 Final Exam Thursday May 12, 2:00–3:50pm I am teaching Calc II MW 2:00pm and Calc III TR 2:00pm both Fall ’11 and Spring ’12
  • 3. Objectives given a func on, graph it completely, indica ng zeroes (if easy) asymptotes if applicable cri cal points local/global max/min inflec on points
  • 4. Why? Graphing func ons is like dissec on
  • 5. Why? Graphing func ons is like dissec on … or diagramming sentences
  • 6. Why? Graphing func ons is like dissec on … or diagramming sentences You can really know a lot about a func on when you know all of its anatomy.
  • 7. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Example f(x) f(x) = x3 + x2 .
  • 8. The Increasing/Decreasing Test Theorem (The Increasing/Decreasing Test) If f′ > 0 on (a, b), then f is increasing on (a, b). If f′ < 0 on (a, b), then f is decreasing on (a, b). Example f(x) f′ (x) f(x) = x3 + x2 f′ (x) = 3x2 + 2x .
  • 9. Testing for Concavity Theorem (Concavity Test) If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b). Example f(x) f(x) = x3 + x2 .
  • 10. Testing for Concavity Theorem (Concavity Test) If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b). Example f′ (x) f(x) f(x) = x3 + x2 f′ (x) = 3x2 + 2x .
  • 11. Testing for Concavity Theorem (Concavity Test) If f′′ (x) > 0 for all x in (a, b), then the graph of f is concave upward on (a, b) If f′′ (x) < 0 for all x in (a, b), then the graph of f is concave downward on (a, b). Example f′′ (x) f′ (x) f(x) f(x) = x3 + x2 f′ (x) = 3x2 + 2x . f′′ (x) = 6x + 2
  • 12. Graphing Checklist To graph a func on f, follow this plan: 0. Find when f is posi ve, nega ve, zero, not defined.
  • 13. Graphing Checklist To graph a func on f, follow this plan: 0. Find when f is posi ve, nega ve, zero, not defined. 1. Find f′ and form its sign chart. Conclude informa on about increasing/decreasing and local max/min.
  • 14. Graphing Checklist To graph a func on f, follow this plan: 0. Find when f is posi ve, nega ve, zero, not defined. 1. Find f′ and form its sign chart. Conclude informa on about increasing/decreasing and local max/min. 2. Find f′′ and form its sign chart. Conclude concave up/concave down and inflec on.
  • 15. Graphing Checklist To graph a func on f, follow this plan: 3. Put together a big chart to assemble monotonicity and concavity data
  • 16. Graphing Checklist To graph a func on f, follow this plan: 3. Put together a big chart to assemble monotonicity and concavity data 4. Graph!
  • 17. Outline Simple examples A cubic func on A quar c func on More Examples Points of nondifferen ability Horizontal asymptotes Ver cal asymptotes Trigonometric and polynomial together Logarithmic
  • 18. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x.
  • 19. Graphing a cubic Example Graph f(x) = 2x3 − 3x2 − 12x. (Step 0) First, let’s find the zeros. We can at least factor out one power of x: f(x) = x(2x2 − 3x − 12) so f(0) = 0. The other factor is a quadra c, so we the other two roots are √ √ 3 ± 32 − 4(2)(−12) 3 ± 105 x= = 4 4 It’s OK to skip this step for now since the roots are so complicated.
  • 20. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: .
  • 21. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: . x−2 2 x+1 −1 f′ (x) −1 2 f(x)
  • 22. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 x+1 −1 f′ (x) −1 2 f(x)
  • 23. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) −1 2 f(x)
  • 24. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + −1 2 f(x)
  • 25. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − −1 2 f(x)
  • 26. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + −1 2 f(x)
  • 27. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + ↗−1 2 f(x)
  • 28. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + ↗−1 ↘ 2 f(x)
  • 29. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + ↗−1 ↘ 2 ↗ f(x)
  • 30. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + ↗−1 ↘ 2 ↗ f(x) max
  • 31. Step 1: Monotonicity f(x) = 2x3 − 3x2 − 12x =⇒ f′ (x) = 6x2 − 6x − 12 = 6(x + 1)(x − 2) We can form a sign chart from this: − .− + x−2 2 − + + x+1 −1 f′ (x) + − + ↗−1 ↘ 2 ↗ f(x) max min
  • 32. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: .
  • 33. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . f′′ (x) 1/2 f(x)
  • 34. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . −− f′′ (x) 1/2 f(x)
  • 35. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . −− ++ f′′ (x) 1/2 f(x)
  • 36. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . −− ++ f′′ (x) ⌢ 1/2 f(x)
  • 37. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . −− ++ f′′ (x) ⌢ 1/2 ⌣ f(x)
  • 38. Step 2: Concavity f′ (x) = 6x2 − 6x − 12 =⇒ f′′ (x) = 12x − 6 = 6(2x − 1) Another sign chart: . −− ++ f′′ (x) ⌢ 1/2 ⌣ f(x) IP
  • 39. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. .
  • 40. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity
  • 41. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity
  • 42. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 43. monotonicity and concavity II I . III IV
  • 44. monotonicity and concavity decreasing, concave down II I . III IV
  • 45. monotonicity and concavity increasing, decreasing, concave concave down down II I . III IV
  • 46. monotonicity and concavity increasing, decreasing, concave concave down down II I . III IV decreasing, concave up
  • 47. monotonicity and concavity increasing, decreasing, concave concave down down II I . III IV decreasing, increasing, concave concave up up
  • 48. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 49. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 50. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 51. Step 3: One sign chart to rule them all Remember, f(x) = 2x3 − 3x2 − 12x. + −. − + f′ (x) ↗−1 ↘ ↘ 2 ↗ monotonicity −− −− ++ ++ f′′ (x) ⌢ ⌢ 1/2 ⌣ ⌣ concavity 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 52. f(x) Step 4: Graph f(x) = 2x3 − 3x2 − 12x ( √ ) (−1, 7) 3− 105 4 ,0 (0, 0) . ( x√ ) (1/2, −61/2) 3+ 105 4 ,0 (2, −20) 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 53. f(x) Step 4: Graph f(x) = 2x3 − 3x2 − 12x ( √ ) (−1, 7) 3− 105 4 ,0 (0, 0) . ( x√ ) (1/2, −61/2) 3+ 105 4 ,0 (2, −20) 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 54. f(x) Step 4: Graph f(x) = 2x3 − 3x2 − 12x ( √ ) (−1, 7) 3− 105 4 ,0 (0, 0) . ( x√ ) (1/2, −61/2) 3+ 105 4 ,0 (2, −20) 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 55. f(x) Step 4: Graph f(x) = 2x3 − 3x2 − 12x ( √ ) (−1, 7) 3− 105 4 ,0 (0, 0) . ( x√ ) (1/2, −61/2) 3+ 105 4 ,0 (2, −20) 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 56. f(x) Step 4: Graph f(x) = 2x3 − 3x2 − 12x ( √ ) (−1, 7) 3− 105 4 ,0 (0, 0) . ( x√ ) (1/2, −61/2) 3+ 105 4 ,0 (2, −20) 7 −61/2 −20 f(x) −1 1/2 2 shape of f max IP min
  • 57. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10
  • 58. Graphing a quartic Example Graph f(x) = x4 − 4x3 + 10 (Step 0) We know f(0) = 10 and lim f(x) = +∞. Not too many x→±∞ other points on the graph are evident.
  • 59. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3)
  • 60. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. .
  • 61. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. 0. 4x2 0
  • 62. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0. 4x2 0
  • 63. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0. + 4x2 0
  • 64. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0. + + 4x2 0
  • 65. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0. + + 4x2 0 0 (x − 3) 3
  • 66. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − 0 (x − 3) 3
  • 67. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0 (x − 3) 3
  • 68. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3
  • 69. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 f′ (x) 0 0 0 3 f(x)
  • 70. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 f′ (x) −0 0 0 3 f(x)
  • 71. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 f′ (x) −0 − 0 0 3 f(x)
  • 72. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 ′ −0 − 0 + f (x) 0 3 f(x)
  • 73. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 ′ −0 − 0 + f (x) ↘0 3 f(x)
  • 74. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 ′ −0 − 0 + f (x) ↘0 ↘ 3 f(x)
  • 75. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 ′ −0 − 0 + f (x) ↘0 ↘ 3 ↗ f(x)
  • 76. Step 1: Monotonicity f(x) = x4 − 4x3 + 10 =⇒ f′ (x) = 4x3 − 12x2 = 4x2 (x − 3) We make its sign chart. +0 . + + 4x2 0 − − 0+ (x − 3) 3 ′ −0 − 0 + f (x) ↘0 ↘ 3 ↗ f(x) min
  • 77. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) .
  • 78. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: .
  • 79. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: 0 . 12x 0
  • 80. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . 12x 0
  • 81. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . + 12x 0
  • 82. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . + + 12x 0
  • 83. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0 . + + 12x 0 0 x−2 2
  • 84. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − 0 x−2 2
  • 85. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 x−2 2
  • 86. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2
  • 87. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) 0 0 0 2 f(x)
  • 88. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 0 0 2 f(x)
  • 89. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 0 2 f(x)
  • 90. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 ++ 0 2 f(x)
  • 91. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 ++ ⌣0 2 f(x)
  • 92. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 ++ ⌣0 ⌢ 2 f(x)
  • 93. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 ++ ⌣0 ⌢ 2 ⌣ f(x)
  • 94. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − − 0 + x−2 2 f′′ (x) ++0 −− 0 ++ ⌣0 ⌢ 2 ⌣ f(x) IP
  • 95. Step 2: Concavity f′ (x) = 4x3 − 12x2 =⇒ f′′ (x) = 12x2 − 24x = 12x(x − 2) Here is its sign chart: −0. + + 12x 0 − −0 + x−2 2 f′′ (x) ++0 −− 0 ++ ⌣0 ⌢ 2 ⌣ f(x) IP IP
  • 96. Step 3: Grand Unified Sign Chart . Remember, f(x) = x − 4x3 + 10. 4 −0 − −0+ f′ (x) ↘0 ↘ ↘3↗ monotonicity f′′ (x) ++0 −− 0++ ++ ⌣0 ⌢ 2⌣ ⌣ concavity 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 97. Step 3: Grand Unified Sign Chart . Remember, f(x) = x − 4x3 + 10. 4 −0 − −0+ f′ (x) ↘0 ↘ ↘3↗ monotonicity f′′ (x) ++0 −− 0++ ++ ⌣0 ⌢ 2⌣ ⌣ concavity 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 98. Step 3: Grand Unified Sign Chart . Remember, f(x) = x − 4x3 + 10. 4 −0 − −0+ f′ (x) ↘0 ↘ ↘3↗ monotonicity f′′ (x) ++0 −− 0++ ++ ⌣0 ⌢ 2⌣ ⌣ concavity 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 99. Step 3: Grand Unified Sign Chart . Remember, f(x) = x − 4x3 + 10. 4 −0 − −0+ f′ (x) ↘0 ↘ ↘3↗ monotonicity f′′ (x) ++0 −− 0++ ++ ⌣0 ⌢ 2⌣ ⌣ concavity 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 100. Step 3: Grand Unified Sign Chart . Remember, f(x) = x − 4x3 + 10. 4 −0 − −0+ f′ (x) ↘0 ↘ ↘3↗ monotonicity f′′ (x) ++0 −− 0++ ++ ⌣0 ⌢ 2⌣ ⌣ concavity 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 101. y Step 4: Graph f(x) = x4 − 4x3 + 10 (0, 10) . x (2, −6) (3, −17) 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 102. y Step 4: Graph f(x) = x4 − 4x3 + 10 (0, 10) . x (2, −6) (3, −17) 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 103. y Step 4: Graph f(x) = x4 − 4x3 + 10 (0, 10) . x (2, −6) (3, −17) 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 104. y Step 4: Graph f(x) = x4 − 4x3 + 10 (0, 10) . x (2, −6) (3, −17) 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 105. y Step 4: Graph f(x) = x4 − 4x3 + 10 (0, 10) . x (2, −6) (3, −17) 10 −6 −17 f(x) 0 2 3 shape IP IP min
  • 106. Outline Simple examples A cubic func on A quar c func on More Examples Points of nondifferen ability Horizontal asymptotes Ver cal asymptotes Trigonometric and polynomial together Logarithmic
  • 107. Graphing a function with a cusp Example √ Graph f(x) = x + |x|
  • 108. Graphing a function with a cusp Example √ Graph f(x) = x + |x| This func on looks strange because of the absolute value. But whenever we become nervous, we can just take cases.
  • 109. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is posi ve.
  • 110. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is posi ve. Are there nega ve numbers which are zeroes for f?
  • 111. Step 0: Finding Zeroes √ f(x) = x + |x| First, look at f by itself. We can tell that f(0) = 0 and that f(x) > 0 if x is posi ve. Are there nega ve numbers which are zeroes for f? √ √ x + −x = 0 =⇒ −x = −x −x = x2 =⇒ x2 + x = 0 The only solu ons are x = 0 and x = −1.
  • 112. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞
  • 113. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same x→−∞ √ as lim (−y + y) y→+∞
  • 114. Step 0: Asymptotic behavior √ f(x) = x + |x| lim f(x) = ∞, because both terms tend to ∞. x→∞ lim f(x) is indeterminate of the form −∞ + ∞. It’s the same x→−∞ √ as lim (−y + y) y→+∞ √ √ √ y+y lim (−y + y) = lim ( y − y) · √ y→+∞ y→∞ y+y y − y2 = lim √ = −∞ y→∞ y+y
  • 115. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x
  • 116. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x No ce f′ (x) > 0 when x > 0 (so no cri cal points here)
  • 117. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x No ce f′ (x) > 0 when x > 0 (so no cri cal points here) lim+ f′ (x) = ∞ (so 0 is a cri cal point) x→0
  • 118. Step 1: The derivative √ Remember, f(x) = x + |x|. To find f′ , first assume x > 0. Then d ( √ ) 1 f′ (x) = x+ x =1+ √ dx 2 x No ce f′ (x) > 0 when x > 0 (so no cri cal points here) lim+ f′ (x) = ∞ (so 0 is a cri cal point) x→0 lim f′ (x) = 1 (so the graph is asympto c to a line of slope 1) x→∞
  • 119. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is nega ve, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x No ce lim− f′ (x) = −∞ (other side of the cri cal point) x→0
  • 120. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is nega ve, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x No ce lim− f′ (x) = −∞ (other side of the cri cal point) x→0 lim f′ (x) = 1 (asympto c to a line of slope 1) x→−∞
  • 121. Step 1: The derivative √ Remember, f(x) = x + |x|. If x is nega ve, we have d ( √ ) 1 f′ (x) = x + −x = 1 − √ dx 2 −x No ce lim− f′ (x) = −∞ (other side of the cri cal point) x→0 lim f′ (x) = 1 (asympto c to a line of slope 1) x→−∞ ′ f (x) = 0 when 1 √ 1 1 1 1− √ = 0 =⇒ −x = =⇒ −x = =⇒ x = − 2 −x 2 4 4
  • 122. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. f′ (x) . f(x)
  • 123. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. 0 f′ (x) . −1 4 f(x)
  • 124. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. 0 ∞ f′ (x) . −1 4 0 f(x)
  • 125. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0 ∞ f′ (x) . −1 4 0 f(x)
  • 126. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ f′ (x) . −4 0 1 f(x)
  • 127. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . −4 0 1 f(x)
  • 128. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . ↗ −4 0 1 f(x)
  • 129. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . ↗ −4 1↘ 0 f(x)
  • 130. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . ↗ −4 1↘ 0 ↗ f(x)
  • 131. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . ↗ −41↘ 0 ↗ f(x) max
  • 132. Step 1: Monotonicity  1 1 + √  if x > 0 ′ f (x) = 2 x 1 − √ 1  if x < 0 2 −x We can’t make a mul -factor sign chart because of the absolute value, but we can test points in between cri cal points. + 0− ∞ + f′ (x) . ↗ −41↘ 0 ↗ f(x) max min
  • 133. Step 2: Concavity ( ) d 1 1 If x > 0, then f′′ (x) = 1 + x−1/2 = − x−3/2 This is dx 2 4 nega ve whenever x > 0.
  • 134. Step 2: Concavity ( ) d 1 −1/2 1 If x > 0, then f′′ (x) = 1+ x = − x−3/2 This is dx 2 4 nega ve whenever x > 0. ( ) ′′ d 1 −1/2 1 If x < 0, then f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always nega ve for nega ve x.
  • 135. Step 2: Concavity ( ) d 1 −1/2 1 If x > 0, then f′′ (x) = 1+ x = − x−3/2 This is dx 2 4 nega ve whenever x > 0. ( ) ′′ d 1 −1/2 1 If x < 0, then f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always nega ve for nega ve x. 1 In other words, f′′ (x) = − |x|−3/2 . 4
  • 136. Step 2: Concavity ( ) d 1 −1/2 1 If x > 0, then f′′ (x) = 1+ x = − x−3/2 This is dx 2 4 nega ve whenever x > 0. ( ) ′′ d 1 −1/2 1 If x < 0, then f (x) = 1 − (−x) = − (−x)−3/2 dx 2 4 which is also always nega ve for nega ve x. 1 In other words, f′′ (x) = − |x|−3/2 . 4 Here is the sign chart: −− −∞ −− f′′ (x) . ⌢ 0 ⌢ f(x)
  • 137. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| +1 + 0− ∞ + f′ +1 (x) . ↗ ↗ 1↘ 0 ↗ ↗monotonicity −∞ −− − −− 4 −∞ −− f′′ −∞ (x) ⌢ ⌢ 1 ⌢0 ⌢ ⌢concavity −∞ 0 4 0 +∞f(x) −1 −4 0 1 shape zero max min
  • 138. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| +1 + 0− ∞ + f′ +1 (x) . ↗ ↗ 1↘ 0 ↗ ↗monotonicity −∞ −− − −− 4 −∞ −− f′′ −∞ (x) ⌢ ⌢ 1 ⌢0 ⌢ ⌢concavity −∞ 0 4 0 +∞f(x) −1 −4 0 1 shape zero max min
  • 139. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| +1 + 0− ∞ + f′ +1 (x) . ↗ ↗ 1↘ 0 ↗ ↗monotonicity −∞ −− − −− 4 −∞ −− f′′ −∞ (x) ⌢ ⌢ 1 ⌢0 ⌢ ⌢concavity −∞ 0 4 0 +∞f(x) −1 −4 0 1 shape zero max min
  • 140. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| +1 + 0− ∞ + f′ +1 (x) . ↗ ↗ 1↘ 0 ↗ ↗monotonicity −∞ −− − −− 4 −∞ −− f′′ −∞ (x) ⌢ ⌢ 1 ⌢0 ⌢ ⌢concavity −∞ 0 4 0 +∞f(x) −1 −4 0 1 shape zero max min
  • 141. Step 3: Synthesis Now we can put these things together. √ f(x) = x + |x| +1 + 0− ∞ + f′ +1 (x) . ↗ ↗ 1↘ 0 ↗ ↗monotonicity −∞ −− − −− 4 −∞ −− f′′ −∞ (x) ⌢ ⌢ 1 ⌢0 ⌢ ⌢concavity −∞ 0 4 0 +∞f(x) −1 −4 0 1 shape zero max min
  • 142. Graph √ f(x) = x + |x| . x 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 143. Graph √ f(x) = x + |x| (−1, 0) . x 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 144. Graph √ f(x) = x + |x| (− 1 , 1 ) 4 4 (−1, 0) . x 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 145. Graph √ f(x) = x + |x| (− 1 , 1 ) 4 4 (−1, 0) . x (0, 0) 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 146. Graph √ f(x) = x + |x| (− 1 , 1 ) 4 4 (−1, 0) . x (0, 0) 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 147. Graph √ f(x) = x + |x| (− 1 , 1 ) 4 4 (−1, 0) . x (0, 0) 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 148. Graph √ f(x) = x + |x| (− 1 , 1 ) 4 4 (−1, 0) . x (0, 0) 1 −∞0 4 0 +∞ x −1 −1 0 shape 4 zero max min
  • 149. Example with Horizontal Asymptotes Example Graph f(x) = xe−x 2
  • 150. Example with Horizontal Asymptotes Example Graph f(x) = xe−x 2 Before taking deriva ves, we no ce that f is odd, that f(0) = 0, and lim f(x) = 0 x→∞
  • 151. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e . √0 √ 1− 2x 0 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 152. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + . √0 √ 1− 2x 0 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 153. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ √ 1− 2x 0 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 154. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x 0 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 155. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 156. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 157. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 158. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 159. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 f′ (x) √ √ − 1/2 1/2 f(x)
  • 160. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 1/2 f(x)
  • 161. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 ↗ 1/2 f(x)
  • 162. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 ↗ 1/2 ↘ f(x)
  • 163. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 ↗ 1/2 ↘ f(x)
  • 164. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 ↗ 1/2 ↘ f(x) min
  • 165. Step 1: −xMonotonicity 2 If f(x) = xe , then ( ) 2 f′ (x) = 1 · e−x + xe−x (−2x) = 1 − 2x2 e−x 2 2 ( √ )( √ ) −x2 = 1 − 2x 1 + 2x e + + 0 . √ − √ 1− 2x − 0 + 1/2 + √ √ 1 + 2x − − 0 1/2 + 0 − f′ (x) √ √ ↘ − 1/2 ↗ 1/2 ↘ f(x) min max
  • 166. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 0. 2x 0 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 167. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − 0. 2x 0 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 168. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. 2x 0 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 169. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + 2x 0 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 170. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 171. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 172. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 173. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 174. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 175. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 176. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 177. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 178. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 179. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 180. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 181. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 f′′ (x) √ √ − 3/2 0 3/2 f(x)
  • 182. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ √ − 3/2 0 3/2 f(x)
  • 183. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 3/2 f(x)
  • 184. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 f(x)
  • 185. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 ⌣ f(x)
  • 186. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 ⌣ f(x)
  • 187. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 ⌣ f(x) IP
  • 188. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 ⌣ f(x) IP IP
  • 189. Step 2: Concavity ′ 2 −x 2 If f (x) = (1 − 2x )e , we know ( ) 2 f′′ (x) = (−4x)e−x + (1 − 2x2 )e−x (−2x) = 4x3 − 6x e−x 2 2 = 2x(2x2 − 3)e−x 2 − − 0. + + 2x 0 − − − 0 + √ √ √ 2x − 3 − 0 + + 3/2 + √ √ √ 2x + 3 −− − 0 3/2 ++ 0 −− 0 ++ f′′ (x) ⌢ √ ⌣ √ − 3/2 0 ⌢ 3/2 ⌣ f(x) IP IP IP