Your SlideShare is downloading. ×

สมดุลเคมี

22,886

Published on

รายงานเรื่องสมดุลเคมี

รายงานเรื่องสมดุลเคมี

0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
22,886
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
304
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. สมดุลเคมี<br />สมดุลเคมี คือ ภาวะสมดุลไดนามิก เกิดเมื่อระบบมีสมบัติคงที่แล้ว แต่ยังคงมีการเปลี่ยนแปลงที่ผันกลับได้ ซึ่งอัตราการเกิดปฏิกิริยาไปข้างหน้า เท่ากับอัตราการเกิดปฏิกิริยาย้อยกลับ สมบัติจึงไม่เปลี่ยนแปลง เช่น ของเหลว ไอ ร้อนขึ้น เย็นลง <br />คุณสมบัติของสมดุลเคมี <br />1. ต้องเกิดในระบบปิด <br />2. เกิดการเปลี่ยนแปลงที่ผันกลับได้ <br />3. ที่ภาวะสมดุลอัตราการเกิดปฏิกิริยาไปข้างหน้าจะเท่ากับ อัตราการเกิดปฏิกิริยาผันกลับ <br />4. มีสารตั้งต้นเหลืออยู่ทุกสารในระบบ <br />5. สมบัติของระบบคงที่<br />การเปลี่ยนแปลงที่ผันกลับได้<br />ปฏิกิริยาผันกลับได้<br />การเปลี่ยนแปลงโดยทั่วไป มักจะเป็นการเกิดปฏิกิริยาเคมี และการเกิดปฏิกิริยาแบ่งออกเป็น 2 ประเภท คือก. ปฏิกิริยาเกิดสมบูรณ์(Irreversible reaction)<br />                ปฏิกิริยาเกิดสมบูรณ์ หมายถึง ปฏิกิริยาที่สารตั้งต้นทำปฏิกิริยากันจนหมด เกิดผลิตภัณฑ์อย่างสมบูรณ์ปฏิกิริยาจะยุติเมื่อสารตั้งต้นสารได้สารหนึ่งหมดและเป็นปฏิกิริยาที่ไม่ย้อนกลับ เช่น การเผาไหม้ของถ่านกับก๊าซออกซิเจนในอากาศจำนวนมากเกินพอเกิดก๊าซคาร์บอนไดออกไซด์ เขียนแทนด้วยสมการ ดังนี้<br />โลหะสังกะสีทำปฏิกิริยากับกรดไฮโดรคลอริก เกิดก๊าซไฮโดรเจน เขียนแทนด้วยสมการ ดังนี้<br />* หมายเหตุ เครื่องหมาย แทนการเปลี่ยนแปลงที่เกิดสมบูรณ์ เช่น เกิดปฏิกิริยาสมบูรณ์<br />ข. ปฏิกิริยาเกิดไม่สมบูรณ์<br />ปฏิกิริยาเกิดไม่สมบูรณ์ หมายถึง ปฏิกิริยาที่สารตั้งต้นทำปฏิกิริยากัน ได้ผลิตภัณฑ์และในขณะเดียวกัน ผลิตภัณฑ์ที่เกิดขึ้นบางส่วนทำปฏิกิริยากันกลับเป็นสารตั้งต้นใหม่ ทำให้ปฏิกิริยาเกิดไม่สมบูรณ์ ไม่ว่าจะใช้เวลานานเท่าใดก็ตาม ภายในระบบยังคงมีทั้งสารตั้งต้นทุกชนิดเหลือ และผลิตภัณฑ์เกิดขึ้นทุกชนิด และระบบจะมีทั้งการเกิดปฏิกิริยาไปข้างหน้า และปฏิกิริยาย้อนกลับ เรียกปฏิกิริยาประเภทนี้ว่า ปฏิกิริยาผันกลับได้ (Reversible reaction) เช่น ปฏิกิริยาผันกลับที่เกิดขึ้นระหว่าง [Co(H2O)6] 2+ กับ Cl - ดังนี้<br />* หมายเหตุ เครื่องหมาย แทนการเปลี่ยนแปลงที่ผันกลับได้ และแสดงว่าเกิดสมดุล<br />การเปลี่ยนแปลงของระบบที่ผันกลับได้ ไม่จำเป็นต้องเป็นระบบที่มีการเกิดปฏิกิริยาเท่านั้น อาจจะเป็นการละลายเป็นสารละลาย หรือ การเปลี่ยนสถานะของสาร ดังนั้น การเปลี่ยนแปลงของสารที่ผันกลับได้สามารถแบ่งเป็น 3 ประเภทดังนี้<br />การละลายเป็นสารละลาย              การละลายเป็นสารละลาย โดยทั่วไปเป็นการละลายที่มีสถานะเป็นของแข็ง ของเหลว และก๊าซ ในตังทำละลายเป็นของเหลว เกิดสารละลาย เช่น การละลาย KNO3 ในน้ำเป็นสารละลาย KNO3 ดังนี้<br />การเปลี่ยนแปลงไปข้างหน้า และถ้าละลายต่อไปจนอิ่มตัว มี KNO3 เหลือ และมีการรวมตัวของ K+ กับ NO – 3 เป็น KNO3 ผันกลับได้ ดังนี้<br />การเปลี่ยนแปลงย้อนกลับเมื่อนำมาเขียนรวมๆ กันจะเป็นการเปลี่ยนแปลงที่ผันกลับได้ คือ<br />1190625662305การเปลี่ยนสถานะของสาร               การเปลี่ยนสถานะของสาร สารต่างๆ ทุกชนิดสามารถเปลี่ยนสถานะให้เป็นของแข็ง ของเหลว หรือ ก๊าซได้โดยเกี่ยวข้องกับพลังงาน ไม่เป็นแบบดูดความร้อน ก็เป็นแบบคายความร้อน เช่น การเปลี่ยนสถานะของสารที่เป็นของแข็งเป็นก๊าซ ดังนี้<br />การเปลี่ยนแปลงขั้น 1 , 2 และ 4 เป็นแบบดูดความร้อน ส่วนการเปลี่ยนแปลงในขั้นที่ 3 , 5 และ 6 เป็นการคายความร้อนตัวอย่างการเปลี่ยนแปลงสถานะของน้ำแข็งเป็นน้ำเหลว ดังนี้<br />   การเปลี่ยนแปลงไปข้างหน้า<br />แต่ขณะเดียวกัน น้ำเหลวควบแน่นเป็นน้ำแข็ง ผันกลับได้ ดังนี้<br />  การเปลี่ยนแปลงย้อนกลับ<br />เมื่อนำมาเขียนรวมกันจะเป็นการเปลี่ยนแปลงที่ผันกลับได้ คือ<br /> การเกิดปฏิกิริยาเคมี<br />การเกิดปฏิกิริยาเคมี เป็นการเปลี่ยนแปลงที่เกิดสารใหม่ที่มีสมบัติแตกต่างจากสารเดิม ปฏิกิริยาเคมีมีทั้งชนิดไม่ผันกลับ(ปฏิกิริยาเกิดสมบูรณ์) และปฏิกิริยาที่ผันกลับได้ (ปฏิกิริยาเกิดไม่สมบูรณ์) เช่น<br />- ปฏิกิริยาระหว่าง Cu2+ กับ Mg เกิด Cu และ Mg2+ ดังนื้<br /> (ทิ้งไว้นานมาก) เกิดปฏิกิริยาสมบูรณ์ (ปฏิกิริยาไม่ผันกลับ)<br />- ปฏิกิริยาระหว่าง Fe3+ กับ I- เกิด Fe2+ และ I2 ดังนี้<br />ปฏิกิริยาไปข้างหน้าและ ในขณะเดียวกัน Fe2+ กับ I2 เกิดปฏิกิริยาย้อนกลับได้ Fe3 และ I- ดังนี้ <br />เกิดปฏิกิริยาย้อนกลับเมื่อนำมาเขียนรวมๆ กันจะเป็นการที่ผันกลับได้ คือ<br /> <br />การเปลี่ยนแปลงที่ทำให้เกิดภาะสมดุล<br />ภาวะสมดุล<br />  <br /> เมื่อนำของเหลวที่ระเหยได้จำนวนหนึ่งใส่ในภาชนะที่มีฝาปิดตั้งทิ้งไว้ในห้องที่มีอุณหภูมิคงที่ จะพบว่าระดับของเหลวจะลดลงจนในที่สุดจะคงที่ การที่เป็นเช่นนี้เพราะของเหลวบางส่วนระเหยกลายเป็นไอ และไอบางส่วนก็ควบแน่นกลับมาเป็นของเหลวอีก ในตอนแรกการระเหยจะมากกว่าการควบแน่น ทำให้ระดับของเหลวลดลงแต่เมื่อเวลาผ่านไป การควบแน่นจะมากขึ้นและในที่สุดอัตราการระเหยและการควบแน่นจะเท่ากัน ทำให้ระดับของของเหลวคงที่ เรียกภาวะที่ระบบมีการเปลี่ยนแปลงเท่ากันนี้ว่า ภาวะสมดุลเมื่อระบบอยู่ในภาวะสมดุล สมบัติต่าง ๆ ของระบบจะคงที่ เช่น ความดัน ความหนาแน่น ความถ่วงจำเพาะ ความเข้มข้น และความเข้มของสีเป็นต้น             การพิจารณาว่าระบบหนึ่ง ๆ อยู่ในภาวะสมดุลหรือไม่ ต้องใช้เวลาเท่าใดจึงจะอยู่ในภาวะสมดุลให้พิจารณาจากสมบัติต่าง ๆ ของระบบดังที่กล่าวมาแล้ว เช่นอาจจะดูจากสีของระบบ จากปริมาณของตะกอนในระบบหรือจากความดันของระบบ นอกจากจะดูด้วยตาเปล่าแล้วอาจจะทำให้เห็นชัดขึ้นโดยการนำสมบัติต่าง ๆ ของระบบมาเขียนกราฟร่วมกับเวลาที่ใช้ ถ้าเป็นระบบที่เกิดภาวะสมดุล เมื่อถึงระยะเวลาหนึ่งสมบัติเหล่านั้นจะคงที่ ดังกราฟตัวอย่างต่อไปนี้<br />                สมบัติของระบบอาจจะค่อย ๆ ลดลงจนถึงเวลา t แล้วคงที่ หรือค่อย ๆ เพิ่มขึ้นจนถึงเวลา t แล้วคงที่ ดังนั้น t จึงเป็นเวลาที่ระบบเริ่มอยู่ในภาวะสมดุล ถ้าไม่มีสิ่งใดมารบกวนสมดุล สมบัติของระบบจะคงที่ตลอดไป ลักษณะของกราฟจะเป็นเส้นตรงขนานกับแกนเวลา ในกรณีที่ระบบนั้นไม่มีภาวะสมดุล หรือในกรณีที่ปฏิกิริยานั้นเกิดขึ้นอย่างสมบูรณ์ กราฟที่แสดงสมบัติของระบบจะไม่คงที่ ถ้าสมบัติเหล่านั้นลดลงก็จะลดลงจนกลายเป็นศูนย์ เช่นการเผา CaCO3 ในภาชนะเปิดตามสมการ<br />เนื่องจากเป็นระบบที่ไม่เกิดภาวะสมดุล ดังนั้นถ้าเขียนกราฟแสดงความสัมพันธ์ระหว่างมวลของ CaCO3 ที่เหลือกับเวลา หรือปริมาตรของก๊าซ CO2 กับเวลาจะได้ดังนี้<br />สมดุลไดนามิก (Dynamic equilibrium)                สมดุลไดนามิก เป็นภาวะสมดุลที่เกี่ยวข้องกับอัตราการเกิดปฏิกิริยาของสาร “หมายถึงภาวะสมดุลที่ระบบมีอัตราการเกิดปฏิกิริยาไปข้างหน้าเท่ากับอัตราการเกิดปฏิกิริยาย้อนกลับ หรือมีอัตราการเปลี่ยนแปลงสุทธิเท่ากับศูนย์”<br />                 เมื่อระบบอยู่ในภาวะสมดุลจะมีอัตราเร็วสุทธิของปฏิกิริยาเท่ากับศูนย์ ทำให้ความเข้มข้นของสารต่าง ๆ ในระบบคงที่ อย่างไรก็ตามที่ภาวะสมดุลไม่ได้หมายความว่าจะไม่มีการเปลี่ยนแปลงใด ๆ เกิดขึ้น การเปลี่ยนแปลงยังคงเกิดขึ้นตลอดเวลาทั้งปฏิกิริยาไปข้างหน้าและปฏิกิริยาย้อนกลับ เพียงแต่มีอัตราเร็วเท่ากัน เมื่อดูจากลักษณะภายนอกจึงคล้ายกับไม่เกิดการเปลี่ยนแปลง ตัวอย่างเช่นเมื่อใส่น้ำลงใส่ถ้วยแก้วที่ฝาปิด น้ำจะกลายเป็นไอทำให้ระดับน้ำในถ้วยแก้วลดลง ในขณะเดียวกันไอน้ำบางส่วนจะกลั่นตัวกลายเป็นน้ำ เมื่อถึงระยะเวลาหนึ่งระดับน้ำในถ้วยแก้วจะคงที่ซึ่งเป็นภาวะที่ระบบกำลังสมดุล ดูจากภายนอกจะไม่เห็นการเปลี่ยนแปลงเกิดขึ้น ทั้ง ๆ ที่ในขณะนั้นการระเหยและการกลั่นตัวยังคงเกิดขึ้นตลอดเวลาด้วยอัตราเร็วเท่ากัน<br />ประเภทของสมดุลไดนามิก              โดยทั่ว ๆ ไป แบ่งประเภทสมดุลไดนามิกตามลักษณะการเปลี่ยนแปลงของสาร คือสมดุลไดนามิก เนื่องจากการเปลี่ยนสถานะ การเกิดสารละลายและการเกิดปฏิกิริยาเคมี ซึ่งจะได้กล่าวถึงรายละเอียดของแต่ละประเภทต่อไป<br />ภาวะสมดุลระหว่างสถานะ            เนื่องจากสารแต่ละชนิดสามารถมีได้ทั้งของแข็ง ของเหลวและก๊าซ โดยที่สถานะต่าง ๆ ของสารสามารถจะเปลี่ยนกลับไปกลับมาได้โดยการเพิ่มหรือลดพลังงานให้แก่ระบบ ดังนั้นการเปลี่ยนสถานะของสารจึงมีภาวะสมดุลเกิดขึ้นได้ เช่น สมดุลระหว่างของแข็งกับของเหลว ของเหลวกับก๊าซ และของแข็งกับก๊าซ โดยมีชื่อเรียกต่าง ๆ กันตามลักษณะของการเปลี่ยนแปลง<br />ภาวะสมดุลในสารละลาย            ดังที่ได้กล่าวมาในตอนต้นแล้วว่าการละลายของสามารถทำให้เกิดภาวะสมดุลขึ้นได้ ทั้งสารที่เป็นอิเล็กโทรไลต์และนอน – อิเล็กโทรไลต์ โดยแบ่งลักษณะสมดุลของการละลายเป็น 2 ประเภทดังนี้<br />ก. สมดุลของการแตกตัว  เกิดขึ้นกับการละลายของอิเล็กโทรไลต์อ่อนในน้ำ บางส่วนจะแตกตัวเป็นไอออน ในขณะที่บางส่วนของไอออนจะรวมกันโมเลกุลเมื่อถึงภาวะสมดุลอัตราการแตกตัวเป็นไอออนจะเท่ากับอัตราการรวมกันเป็นโมเลกุล เรียกว่า สมดุลของการแตกตัว ตัวอย่างเช่นการละลายของกรดไฮโดรไซยานิก (HCN) ในน้อ HCN จะแตกตัวบางส่วนเป็นไอออนซึ่งจัดว่าเป็นปฏิกิริยาไปข้างหน้า<br />ข. สมดุลของการละลาย เกิดขึ้นกับการละลายของอิเล็กโทรไลต์แก่หรือนอน – อิเล็กโทรไลต์ที่อยู่ในภาวะอิ่มตัวและมีของแข็งเหลืออยู่ เมื่อนำอิเล็กโทรไลต์แก่เช่น NaCI หรือนอน-อิเล็กโทรไลต์ เช่น C6H12O6 ละลายในน้ำ ในตอนแรกของแข็งเหล่านี้จะละลายได้หมดไม่มีภาวะสมดุลเกิดขึ้น แต่เมื่อเติมของแข็งลงไปในน้ำเรื่อย ๆ จนได้สารละลายอิ่มตัวจะมีภาวะสมดุลเกิดขึ้น ผลึกของแข็งส่วนหนึ่งจะละลายในน้ำซึ่งเป็นปฏิกิริยาไปข้างหน้า ในขณะเดียวกันสารที่อยู่ในสารละลายอิ่มตัวจะรวมกันเกิดเป็นผลึกของแข็งขึ้นมาใหม่ซึ่งเป็นปฏิกิริยาย้อนกลับ ที่ภาวะสมดุลอัตราการเกิดปฏิกิริยาไปข้างหน้า (อัตราการละลาย) จะเท่ากับอัตราการเกิดปฏิกิริยาย้อนกลับ (อัตราการตกผลึก) เรียกว่า สมดุลของการละลาย<br />ตัวอย่าง เช่นสมดุลของการละลายของ I2 ในตัวทำละลายผสมระหว่างน้ำกับเอธานอล ซึ่งจัดว่าเป็นการละลายของนอน – อิเล็กโทรไลต์เมื่อ I2 ละลายในเอธานอลจนได้สารละลายอิ่มตัว มีผลึกของ I2 เหลืออยู่จะมีภาวะสมดุลเกิดขึ้น<br />ในกรณีการละลายของอิเล็กโทรไลต์แก่ก็เช่นเดียวกัน จะมีสมดุลของการละลายเกิดขึ้น เช่น การละลายของ CuSO4 ในน้ำ เมื่อสารละลายอิ่มตัวสีของสารละลายจะคงที่ (สีฟ้าของ Cu2+) และมีผลึก CuSO4 เหลืออยู่<br />จะเห็นได้ว่าการเกิดสารละลายสามารถมีภาวะสมดุลได้ 2 ประเภทคือสมดุลของการแตกตัวและสมดุลของการละลาย<br />สมดุลของการแตกตัวจะเกิดขึ้นกับการเกิดสารละลายของอิเล็กโทรไลต์อ่อนและสมดุลของการละลายจะเกิดขึ้นกับการเกิดสารละลายของอิเล็กโทรไลต์แก่<br />หรือนอนอิเล็กโทรไลต์ โดยที่สารละลายนั้นจะต้องอยู่ในภาวะอิ่มตัว (ถ้าไม่ใช่สารละลายอิ่มตัวจะไม่เกิดภาวะสมดุล)<br /> สมดุลในปฏิกิริยาเคมี<br />การเปลี่ยนแปลงทางเคมีก็สามารถเกิดภาวะสมดุลได้เช่นเดียวกับการเปลี่ยนแปลงทางกายภาพ โดยมีชื่อเรียกต่าง ๆ กันตามลักษณะของปฏิกิริยาที่เกิดขึ้น เช่น<br />โดยทั่ว ๆ ไปปฏิกิริยาเคมีที่มีการเปลี่ยนแปลงแบบผันกลับได้ จะเกิดสมดุลไดนามิกได้ทั้งสิ้น แต่อาจจะใช้เวลาในการดำเนินเข้าสู่ภาวะสมดุลไม่เท่ากับ เขียนเป็นสมการทั่ว ๆ ไปได้ดังนี้<br />19050302894<br />ความสัมพันธ์ระหว่างความเข้มข้นของสารต่างๆ ณ ภาวะสมดุล<br />1 ค่าคงที่สมดุลกับสมการเคมี<br />1.1ค่าคงที่สมดุล<br />ระบบสมดุลของ H2-I2-HI โดยทำการทดลองสารที่มีปริมาณต่าง ๆ ทำปฏิกิริยากันเข้าสู่สมดุลที่อุณหภูมิ 731K ดังสมการของปฏิกิริยาสมดุล คือ<br />                                           H2 (g) + I2 (g) < --------- > 2HI(g)<br />ตารางพบว่า การทดลองที่ 1 ถึง 4 เริ่มต้นด้วยแก๊ส H และแก๊ส I เท่านั้น ส่วนการทดลองที่ 5 เริ่มต้นด้วยแก๊ส HI<br />จากสมการของปฏิกิริยาสมดุล ถ้าแก๊ส H2 1 โมล ทำปฏิกิริยาพอดีกับแก๊ส I2 1 โมล เกิดแก๊ส HI 2 โมล จากข้อมูลในตาราง 1 จะได้ว่า แก๊ส H2 หรือ I2 ทำปฏิกิริยาเกิดแก๊ส HI จำนวนโมล เป็น 2 เท่าของจำนวนโมลของ H2 หรือ I2 ที่ใช้ไป และแก๊ส HI สลายให้แก๊ส H2 และแก๊ส I2 ที่มีจำนวนโมลเท่ากัน<br />19050293370ทดลองคำนวณหาอัตราส่วนความเข้มข้นของผลิตภัณฑ์กับสารตั้งต้น ที่ภาวะสมดุลามความสัมพันธ์ต่อไปนี้<br />19050-70654<br />          จากผลการทดลอง สามารถสรุปได้ว่า “ปฏิกิริยาที่ผันกลับได้ ไม่ว่าจะเริ่มต้นจากสารตั้งต้นที่มีความเข้มข้นเท่าใดก็ตาม ถ้าระบบเข้าสู่ภาวะสมดุล ความเข้มข้นของสารต่าง ๆ ในระบบจะมีค่าคงที่ ซึ่งนำความเข้มข้นของสารต่าง ๆ มาหาความสัมพันธ์กัน พบว่า อัตราส่วนระหว่างผลคูณของความเข้มข้นของผลิตภัณฑ์แต่ละชนิดยกกำลัง ด้วยตัวเลขบอกจำนวนโมลของผลิตภัณฑ์นั้น ๆ กับผลคูณของความเข้มข้นของสารตั้งต้นที่เหลือแต่ละชนิดยกกำลัง ด้วยตัวเลขบอกจำนวนโมลของสารตั้งต้นนั้น จะได้ค่าคงที่เสมอ ณ อุณหภูมิคงที่ เรียกว่า ค่าคงที่สมดุล”<br />จากตาราง 3 สรุปได้ว่า<br />1. ค่าคงที่สมดุลของปฏิกิริยาต่าง ๆ มีค่าแตกต่างกันไป ขึ้นอยู่กับสมการของปฏิกิริยาที่ดุลแล้ว<br />2. ค่าคงที่สมดุลจะมีค่าเป็นบวกมากกว่าหนึ่ง หรือน้อยกว่าหนึ่ง แต่จะไม่มีค่าเป็น ติดลบ<br />3. โดยทั่วไป ณ อุณหภูมิหนึ่งเมื่อค่าคงที่สมดุล มากกว่า 1 แสดงว่า ผลคูณของคามเข้มข้นของผลิตภัณฑ์ มีค่ามากกว่าผลคูณของความเข้มข้นของสารตั้งต้นที่เหลือ และถ้าคงที่สมดุลน้อยกว่า 1 แสดงว่าผลคูณของความเข้มข้นของผลิตภัณฑ์ มีค่าน้อยกว่าผลคูณของความเข้มข้นของสารตั้งต้นที่เหลือ<br />4. ถ้าค่าคงที่สมดุลมีค่ามาก แสดงว่า ก่อนเกิดสมดุลปฏิกิริยาเกิดไปข้างหน้า (ดำเนินไปทางขวามือ) ได้มาก แต่ถ้าค่าคงที่สมดุลมีค่าน้อย แสดงว่าก่อนเกิดสมดุลเกิดปฏิกิริยาไปข้างหน้าได้น้อย<br />5. ค่าคงที่สมดุลมีค่ามาก หมายความว่า ที่สมดุลจะเกิดผลิตภัณฑ์มาก สารตั้งต้นเหลือน้อยเช่น 2H2(g) + O2(g) < --------- > 2H2O(l) มีค่า<br />K = 1.4 x 1083 ที่ 298 K แสดงว่า ที่สมดุลเกิดผลิตภัณฑ์มาก จนถือว่าปฏิกิริยาเกิดสมบูรณ์<br />6. ค่าคงที่สมดุลมีค่าน้อย หมายความว่า ที่สมดุลเกิดผลิตภัณฑ์น้อย สารตั้งต้นเหลือมากเช่น N2(g) + O2(g) < --------- > 2NO(g) K= 4.5 x10-31 ที่ 298 K แสดงว่า ที่สมดุลเกิดผลิตภัณฑ์น้อยกว่าสารตั้งต้นที่เหลือมากแสดงว่าเกิดปฏิกิริยาน้อยมาก จนถือว่าปฏิกิริยาไม่เกิด<br />2.ค่าคงที่สมดุลกับสมการเคมี<br />การสังเคราะห์ CH3 OH(g) จาก CO(g) และ H2(g) ปฏิกิริยาที่เกิดขึ้นเป็นดังนี้<br />แต่ถ้ากลับสมการของปฏิกิริยาที่ (1) เป็น CH3OH(g) < --------- > CO(g) + 2H2(g)<br />แสดงว่า เมื่อเขียนสมการของปฏิกิริยาเคมีกลับกันกับสมการเดิม ค่า K ใหม่ที่จะได้มีค่าเป็นส่วนกลับกับค่า K เดิม คือกลับเศษเป็นส่วนและส่วนเป็นเศษ<br />ถ้าสัมประสิทธิ์หน้าสูตรของสารในสมการเปลี่ยนไป ค่า K ก็มีค่าเปลี่ยนไปด้วย เช่น จากสมการของปฏิกิริยาที่ (1)<br />แสดงว่า เมื่อคูณตัวเลขใดเข้าไปในสมการของปฏิกิริยา ค่า K ใหม่ที่ได้จะต้องนำค่า K เดิมมายกกำลังด้วยตัวเลขที่คูณนั้น<br />สำหรับค่าคงที่สมดุลของปฏิกิริยาที่เกิดจากปฏิกิริยาย่อยมารวมกัน จะมีค่าเท่ากับผลคูณของค่าคงที่สมดุลของปฏิกิริยาย่อยเหล่านั้น เช่น แก๊สซัลเฟอร์ไดออกไซด์ทำปฏิกิริยากับแก๊สไนโตรเจนไดออกไซด์ เกิดแก๊สซัลเฟอร์ไตรออกไซด์ และแก๊สไนโตรเจนมอนอกไซด์<br />ถ้าปฏิกิริยาซัลเฟอร์ไดออกไซด์กับแก๊สไนโตรเจนไดออกไซด์ เกิดจากปฏิกิริยาย่อยของสมดุลรวมกัน ดังนี้<br />ผลคูณของค่าคงที่สมดุลของปฏิกิริยา (1) และ (2) คือ K1K2 = K<br />แสดงว่า ถ้าปฏิกิริยารวม เกิดจากปฏิกิริยาย่อยรวมกัน ค่าคงที่สมดุลจะเท่ากับค่าคงที่สมดุลของปฏิกิริยาย่อยคูณกัน<br />1.2 การคำนวณเกี่ยวกับค่าคงที่สมดุล<br />ตัวอย่างที่ 1 ปฏิกิริยา 2SO2 ( g ) + O2 < ----- > 2SO3 ( g ) ซึ่งเกิดภายในภาชนะขนาด 1 ลิตร เมื่อปฏิกิริยาเข้าสู่ภาวะสมดุลพบว่าภายในภาชนะประกอบด้วย SO3 0.6 โมล SO2 0.2 โมลและ O2 0.3 โมล จงคำนวณหาค่าคงที่ของสมดุล<br />ตัวอย่างที่ 2 นำเหล็กและน้ำใส่ในภาชนะขนาด 5 dm3 แล้วปิดฝา เมื่อเผาภาชนะที่อุณหภูมิ 1000 C เกิดปฏิกิริยาดังนี้                                  3Fe ( s ) + 4 H2O( g ) <-----> Fe3O4(s) + 4H2(g )      เมื่อปฏิกิริยาเข้าสู่ภาววะสมดุล จากการวิเคราะห์พบว่า ภายในภาชนะประกอบด้วยแก็สไฮโดรเจน 1.10 กรัม และไอน้ำ 42.50 กรัม จงคำนวณหาค่าคงที่ของสมดุลสำหรับปฏิกิริยานี้ที่อุณหภูมิ 100 C    ( H=1 , O =16)<br />ปัจจัยที่มีผลต่อภาวะสมดุล<br />ผลของการเปลี่ยนแปลงความเข้มข้น ความดันและอุณภูมิ<br />               ระบบสมดุลของปฏิกิริยาใดๆ จะพบว่ามีความเข้มข้นของผลิตภัณฑ์ และของสารตั้งต้นที่เหลือคงที่แต่ถ้าเปลี่ยนแปลงบางอย่างในระบบ เช่น เลี่ยนความเข้มข้น ความดัน และอุณภูมิ จะมีผลต่อสมดุลอย่างไรระบบของปฏิกิริยาจะดำเนินเข้าสู่ภาวะสมดุลใหม่หรือไม่ และถ้าเกิดสมดุลใหม่อีก ปริมาณของผลิตภัณฑ์ และของสารตั้งต้นที่เหลือจะเท่า หรือไม่เท่าปริมาณที่มีอยู่ในสมดุลเดิม<br />1. การเปลี่ยนแปลงความเข้มข้น<br />ผลของการเปลี่ยนแปลงความเข้มข้นที่มีต่อภาวะสมดุล<br />             การเปลี่ยนความเข้มข้นของสารในระบบสมดุล ไม่ว่าจะเป็นการเพิ่มหรือลดความเข้มข้น จะทำให้ระบบเสียภาวะสมดุล โดยระบบจะต้องมีการปรับตัวให้กลับสู่สภาวะสมดุลใหม่เสมอ เราลองพิจารณาตัวอย่างของปฏิกิริยาระหว่างไทโอโซยาเนตไอออน (SCN-) กับไอร์ออน (III)ไอออน จนเข้าสู่สมดุล ดังนี้<br />ระบบนี้เข้าสู่สมดุล พบว่า ความเข้มข้นของสีแดงคงที่ ถ้ามีการเปลี่ยนแปลงภาวะสมดุลความเข้มข้นของสีแดงก็จะเปลี่ยนไป โดยที่สีแดงเข้ม แสดงว่ามีปริมาณ [FeSCN]2+ มาก และสีแดงจางลง แสดงว่าปริมาณ[FeSCN]2+ น้อย<br />               การรบกวนสมดุลด้วยการเปลี่ยนความเข้มข้นของสารต่างๆ ในระบบ จะทำให้ระบบเสียสมดุล และระบบจะต้องปรับตัวให้กลับเข้าสู่ภาวะสมดุลใหม่ ซึ่งอาจจะเกิดปฏิกิริยาไปข้างหน้า หรือปฏิกิริยาย้อนกลับก็ได้ ทั้งนี้จะพิจารณาความเข้มของสีแดง บอกปริมาณ [FeSCN]2+ ได้ กล่าวคือ ถ้าสีแดงเข้มขึ้น แสดงว่า ระบบเกิดการปรับตัวเข้าสู่สมดุลใหม่ด้วยการเกิดปฏิกิริยาไปข้างหน้าให้ [FeSCN]2+ เพิ่มขึ้น และในทางตรงข้าม ถ้าสีแดงจางลงแสดงว่า ระบบจะปรับตัวเกิดปฏิกิริยาย้อนกลับ ให้ [FeSCN]2+ ลดลง<br />การทดลองระบบสมดุลของปฏิกิริยาระหว่าง SCN- กับ Fe3+ ดังนี้<br />เมื่อเพิ่มความเข้มข้นของสารตั้งต้นชนิดใดชนิดหนึ่ง เช่น เติม Fe3+ จะทำให้เกิดปฏิกิริยากับ SCN- เกิด[FeSCN]2+ มากขึ้น จึงทำให้สารละลายมีสีแดงเข้มขึ้น แสดงว่า เกิดปฏิกิริยาไปข้างหน้ามากขึ้น และระบบจะปรับตัวเข้าสู่สภาวะสมดุลใหม่อีกครั้งหนึ่ง ซึ่งจะทำให้ความเข้มข้นของสารตั้งต้นและผลิตภัณฑ์เปลี่ยนไป<br />และถ้าลดความเข้มข้นของสารชนิดใดชนิดหนึ่ง เช่น ลด Fe3+ จะทำให้เกิดปฏิกิริยากับ SCN- น้อยลง จึงเกิด [FeSCN]2+ ลดลง จึงทำให้สารละลายสีแดงจางลง แสดงว่าเกิดปฏิกิริยาไปข้างหน้า-น้อยลง เป็นผลทำให้เกิดปฏิกิริยาย้อนกลับมาก แล้วระบบจะปรับตัวเข้าสู่สมดุลใหม่อีกครั้ง ณ สมดุลใหม่จะพบว่ามีความเข้มข้นของสารตั้งต้นและผลิตภัณฑ์เปลี่ยนไป<br />ในทำนองเดียวกัน ถ้าเพิ่มผลิตภัณฑ์ เช่น เดิม[FeSCN]2+ จะทำให้ปริมาณ[FeSCN]2+ มากขึ้น จึงสลายตัวเกิดปฏิกิริยาย้อนกลับมากขึ้น ทำให้สารละลายสีแดงจางลง แล้วคงที่ เมื่อระบบปรับตัวเข้าสู่สมดุลใหม่อีกครั้งหนึ่ง ที่สมดุลใหม่นี้จะพบว่า มีความเข้มข้นของสารตั้งต้น และผลิตภัณฑ์เปลี่ยนไป<br />จากการเปลี่ยนความเข้มข้นของสารต่างๆ ในระบบสมดุล สามารถสรุปได้ว่า ถ้าเติมสารตั้งต้นหรือผลิตภัณฑ์ลงไป<br />จากการเปลี่ยนความเข้มข้นของสารต่างๆ ในระบบสมดุล สาสมรถสรุปได้ว่า ถ้าเติมสารตั้งต้นหรือผลิตภัณฑ์ลงไป เมื่อระบบสมดุลแล้วความเข้มข้นของสารนั้นจะเพิ่มขึ้น ซึ่งมีผลรบกวนสมดุล โดยระบบจะพยายามปรับตัว เพื่อลดปริมาณสารที่เพิ่มขึ้น ด้วยการเกิดปฏิกิริยาไปข้างหน้า หรือปฏิกิริยาย้อนกลับมากขึ้น ในที่สุดระบบจะเข้าสู่ภาวะสมดุลใหม่อีกครั้งหนึ่ง<br />2. การเปลี่ยนแปลงความดันและอุณหภูมิ<br />ผลของการเปลี่ยนแปลงความดันที่มีต่อภาวะสมดุล<br />               การเปลี่ยนแปลงในความดันในที่นี้หมายถึง การเปลี่ยนแปลงปริมาตร เช่น การเพิ่มความดันก็คือ ลดปริมาตรของระบบ การเปลี่ยนแปลงความดันจะมีผลต่อภาวะสมดุลในระบบนั้นจะต้องมีสารอย่างน้อย 1 ชนิด มีสถานะเป็นก๊าซ ส่วนระบบที่ไม่มีก๊าซอยู่เลย จะพบว่า การเปลี่ยนแปลงความดันจะไม่มีผลต่อการรบกวนสมดุล<br />ก่อนที่จะพิจารณาว่าการเปลี่ยนแปลงความดันของระบบ มีผลต่อสมดุลอย่างไร ควรจะต้องทราบว่าความดันมีความสัมพันธ์กับสมบัติอื่นๆ ของก๊าซในระบบ เช่น ปริมาตร ความเข้มข้นและจำนวนโมลอย่างไร<br />จากการศึกษาความสัมพันธ์ต่างๆ ดังนี้<br />1. จากกฎของบอยส์<br />“ณ อุณหภูมิที่คงที่ ปริมาตรของก๊าซที่มีมวลคงที่ จะเป็นสัดส่วนผกผันกับความดันของก๊าซนั้นๆ ”<br />จะได้ว่า V  1/P เมื่อ T และ m คงที่<br />อธิบาย : ที่อุณหภูมิ และมวลของก๊าซในระบบคงที่ ถ้าปริมาณของก๊าซเพิ่มชึ้น ความดันจะลดลง และถ้าปริมาณของก๊าซลดลง ความดันก็เพิ่มขึ้น<br />2. จากกฎของสมการบอกสถานะของก๊าซ<br />สรุปเป็นสูตรได้ว่า PV = nRT<br />P = n(RT /V) ………….(1)<br />เมื่อ T,V และ R คงที่ จะได้ว่า P  n<br />อธิบาย : ที่อุณภูมิ ปริมาตร และมวลของก๊าซคงที่ ความดันแปรผันกับจำนวนโมลของก๊าซ กล่าวคือ ถ้าจำนวนโมลของก๊าซเพิ่มขึ้น ความดันของก๊าซจะเพิ่มขึ้น และถ้าจำนวนโมลของก๊าซลดลง ความดันของก๊าซก็จะลดลงด้วย ดังนั้น ถ้าต้องการให้ระบบมีความดันเพิ่มขึ้น จะต้องให้ระบบเกิดปกิกิริยาในทิศทางที่ลดจำนวนโมล และถ้าต้องการให้ระบบมีความดันลดลง จะต้องให้ระบบเกิดปฏิกิริยาในทิศทางที่ลดจำนวนโมล<br />จากสมการ จะได้ P = ( n / V )(RT)<br />เมื่อ T และ R คงที่ และให้ n /v = C = ความเข้มข้น<br />P     C<br />อธิบาย : ที่อุณหภูมิคงที่ ความดัน แปรผันกับความเข้มข้นของก๊าซ กล่าวคือ ถ้าความดันเพิ่มขึ้น ความเข้มข้นของก๊าซทุกชนิดในระบบก็เพิ่มขึ้น และถ้าความดันลดลง ความเข้มข้นของก๊าซทุกชนิดในระบบก็ลดลง<br />ผลของการเปลี่ยนแปลงอุณหภูมิที่มีต่อภาวะสมดุล<br />สมดุลของปฏิกิริยาเคมี จำแนกตามการเปลี่ยนแปลงพลังงานในระบบเป็นเกณฑ์ได้เป็น 2 ประเภทคือ<br />1.สมดุลของปฏิกิริยาคายความร้อน (Exothermic reaction equilibrium)<br />เขียนสมการแทนดังนี้ H 2(g) + I2 (g) 2HCl (g) H = -9.4 KJ<br />หรือ H2 (g) + I2 (g)  2HCl (g) + 9.4 KJ<br />สมดุลของปฏิกิริยาคายความร้อน เป็นสมดุลของระบบหลังเกิดปฏิกิริยาจะคายพลังงานให้แก่สิ่งแวดล้อม<br />สมดุลของปฏิกิริยาคายความร้อน จะพบว่า ปฏิกิริยาไปข้างหน้า คายความร้อน และปฏิกิริยาย้อนกลับ ดูดความร้อน และ จะเรียนซื่อสมดุลของปฏิกิริยาตามซื่อของปฏิกิริยาไปข้างหน้า คือปฏิกิริยาคายความร้อน<br />2. สมดุลของปกิกิริยาดูดความร้อน (Endothermic reaction equilibrium)เขียนสมการแทนได้ดังนี้N2O4(g) 2NO2(g) H = +57.2 KJ<br />หรือ N2O4(g) + 57.2 KJ 2NO2(g)<br />สมดุลของปฏิกิริยาดูดความร้อน จะพบว่าปฏิกิริยาไปข้างหน้าดูดความร้อน และ ปฏิกิริยาย้อนกลับ คายความร้อน และ จะเรียกซื่อสมดุลของปฏิกิริยาตามซื่อของปฏิกิริยาไปข้างหน้า คือปฏิกิริยาดูดความร้อน<br />สมดุลเคมีในสิ่งมีชีวิตและสิ่งแวดล้อม<br />               การดำรงชีวิตของมนุษย์จะเกี่ยวข้องกับกระบวนการและปฏิกิริยาต่างๆภายในร่างกาย ซึ่งเกิดขึ้นในลักษณะชองสมดุลไดนามิก เช่น กระบวนการหายใจและแลกเปลี่ยนแก๊สในระบบหมุนเวียนเลือด ในภาวะปกติขณะที่ร่างกายพักผ่อน<br />               ผู้ชายจะใช้ O2 ประมาณ 250 มิลลิลิตรต่อนาที และมีความต้องการเพิ่มขึ้นเมื่อทำกิจกรรมหรือออกแรงมากขึ้น O2 จะถูกลำเลียงไปยังส่วนต่างๆของร่างกายโดยรวมไปกับโมเลกุลของฮีโมโกลบิน (Hb) ซึ่งเป็นโปรตีนในเม็ดเลือดแดง โมเลกุลของฮีโมโกลบินที่รวมอยู่กับ O2 เรียกว่า ออกซีฮีโมโกลบิน เขียนสมการอย่างง่ายๆแสดงได้ดังนี้<br />ขณะที่หายใจเข้า O2 จะผ่านหลอดลมฝอยและเข้าสู่ถุงลมปอด ความดันของ O2 ในถุงลมปอดจะสูงกว่าความดันในเส้นเลือดฝอยและรวมตัวกับฮีโมโกลบินที่เม็ดเลือดแดงกลายเป็นออกซิโมโกลบิน ปฏิกิริยาจะดำเนินไปข้างหน้า เมื่อเลือดไหลเวียนไปยังเนื้อเยื่อต่างๆของร่างกายซึ่งจำเป็นต้องใช้ O2 เพื่อทำกิจกรรมต่างที่เป็นผลจากเมทาบอลิซึม O2 ในเลือดจึงถูกปล่อยออกมา ปฏิกิริยาจะเกิดในทิศทางย้อนกลับเพื่อเพิ่มปริมาณ O2 เนื่องจากกระบวนการทั้งสองนี้ดำเนินไปอย่างต่อเนื่องรวมทั้งมีอัตราการเกิดปฏิกิริยาไปข้างหน้าและปฏิกิริยาย้อนกลับเท่ากัน จึงทำให้มีภาวะสมดุลเกิดขึ้น<br />ในกระบวนการหายใจ นอกจากจะมีการปรับสมดุลของ O2 แล้ว ให้พิจารณาสมการแสดงปฏิกิริยาที่เกิดขึ้นในกระบวนการเมทาบอลิซึมของกลูโคส ซึ่งใช้ออกซิเจนดังต่อไปนี้<br />จากสมการทำให้ทราบว่าในการเผาผลาญกลูโคส 1 โมเลกุล จะต้องใช้ O2 จำนวนมากและทำให้เกิด CO2 มากด้วยเช่นกัน เมื่อ CO2 ที่เนื้อเยื่อมีปริมาณสูงขึ้น CO2 จะแพร่เข้าสู่เลือดในหลอดเลือดฝอยเพื่อส่งผ่านไปยังปอด ซึ่ง CO2 จะทำปฏิกิริยากับน้ำเกิดเป็นกรดคาร์บอนิก (H2 CO3) และแตะตัวอยู่ในรูปของไฮโดรเจนคาร์บอเนตไอออน (HCO3) กับไฮโดรเจนไอออน (H+) ดังสมการ<br />ไฮโดรเจนคาร์บอเนตไอออนถูกส่งถึงหลอดเลือดฝอยรอบถุงลมปอด ซึ่งภายในถุงลมปอดมีความดันของ CO2น้อย ปฏิกิริยาจะเกิดย้อนกลับเพื่อเพิ่มความดัน โดย CO2ในหลอดเลือดฝอยจะแพร่เจ้าสู่ถุงลมปอดและถูกขับออกจากปอดในขณะที่เราหายใจออก ระบบการขนส่ง O2 และ CO2 ของร่างกายจากการศึกษาพบว่าในเลือดของคนที่อาศัยอยู่ในพื้นที่ที่สูงกว่าระดับน้ำทะเลมากๆจะมีความเข้มข้นของฮีโมโกลบินเม็ดเลือดแดงสูง แสดงว่าภาวะแวดล้อมที่แตกต่างกันเป็นปัจจัยที่มีผลต่อการทำงานของระบบต่างๆภายในร่างกาย ดังนั้นผู้ที่ต้องเดินทางไปในพื้นที่ที่สูกว่า ระดับน้ำทะเลมากๆ อาจเกิดอาการที่เรียกว่า ไฮพอกเซีย (hypoxia) ซึ่งเกิดจากที่มีออกซิเจนไปเลี้ยงเนื้อเยื่อของร่างกายไม่เพียงพอ ในรายที่เป็นรุนแรงอาจถึงตายได้เราทราบมานานแล้วว่าหน้าที่หลักของฮีโมโกลบินคือการขนส่งออกซิเจนไปเลี้ยงส่วนต่างๆของร่างกาย ซึ่งเขียนสมการอย่างง่ายแสดงปฏิกิริยาได้ดังนี้<br />เนื่องจากความดันของออกซิเจนที่ระดับความสูงจากระดับน้ำทะเลมากๆ มีค่าต่ำกว่าความดันของออกซิเจนในบรรยากาศมีค่าประมาณ 0.14 บรรยากาศ ส่วนความดันย่อยของออกซิเจนในบรรยากาศที่ระดับน้ำทะเลมีค่าประมาณ 0.2 บรรยากาศ ดังนั้นการอยู่ในที่ระดับความสูงมากๆ จึงมีปริมาณของ O2 ในอากาศลดลง ตามหลักของเลอชาเตอลิเอ เมื่อความเข้มข้นของสารตั้งต้นในที่นี้คือออกซิเจนลดลง ปฏิกิริยาย้อนกลับจะเกิดมากขึ้น ทำให้ปริมาณของออกซีฮีโมโกลบินลดลง เป็นผลให้การขนส่ง O2 ไปเลี้ยงเนื้อเยื่อส่วนต่างๆได้น้อยลง จึงทำให้เกิดอาการไฮพอกเซีย อย่างไรก็ตามถ้าอยู่ในบริเวณนั้นนานๆ ร่างกายสามารถปรับตัวโดยสร้าง Hb ในเลือดให้เพิ่มมากขึ้นจนมีผลให้ฮีโมโกลบินสามารถจับกับ O2เกิดเป็นออกซีฮีโมโกลบินได้อย่างเพียงพอ ด้วยเหตุนี้คนที่อยู่ในบริเวณที่มีความสูงมากๆ จึงมีระดับความเข้มข้นของฮีโมโกลบินในเลือดสูงกว่าของคนที่อยู่ที่ระดับน้ำทะเลปกติ เนื่องจากกระบวนการทั้งสองเกิดขึ้นอย่างต่อเนื่องและมีอัตราการเกิดปฏิกิริยาไปข้างหน้าและปฏิกิริยาย้อนกลับเท่ากัน ในที่สุดระบบก็จะปรับตัวเข้าสู่ภาวะสมดุล<br />นอกจากนี้ยังสามารถใช้ความรู้เกี่ยวกับสมดุลเคมีอธิบายสมดุลของแคลเซียมในร่างกายได้อีกด้วย แคลเซียมจัดเป็นธาตุที่มีปริมาณมากที่สุดในร่างกายของมนุษย์ โดยคิดเป็นร้อยละ 1.5 – 2 ของน้ำหนักร่างกายผู้ใหญ่ ปริมาณแคลเซียมในร่างกายร้อยละ 98-99 เป็นองค์ประกอบของฟันและกระดูก ส่วนที่เหลือจะอยู่ในเนื้อเยื่อและกระแสเลือด หน้าที่หลักของแคลเซียมในร่างกายคือการเสริมสร้างและซ่อมแซมกระดูกและฟัน นอกจากนี้ยังมีส่วนร่วมในการทำงานของเอนไซม์ กระบวนการเมทาบอลิซึมของวิตามินดี การหดตัวของกล้ามเนื้อ การเต้นของหัวใจ การแข็งตัวของเลือด การเจริญเติบโตของกระดูกจะถึงจุดสูงสุดเมื่ออายุประมาณ35 ปี และหลังจากอายุ 40 ปี จะเกิดการสูญเสียแคลเซียมในกระดูกไปร้อยละ 1 – 2 ต่อปี เมื่ออายุประมาณ 65 ปี จะสูญเสียแคลเซียมได้ถึงร้อยละ 30 – 50 ต่อปี การสูญเสียแคลเซียมของผู้หญิงจะเกิดเร็วในช่วงภาวะหมดประจำเดือน สำหรับผู้ชายจะมีการสูญเสียที่น้อยกว่า<br />เพื่อให้การทำงายของระบบต่างๆในร่างกายอยู่ในสภาพปกติ จึงต้องมีการรักษาระดับแคลเซียมในเลือดให้คงที่และอยู่ในภาวะสมดุลกับปริมาณแคลเซียมในกระดูก ภายใต้การควบคุมของวิตามินดีและพาราทอร์โมน การลดปริมาณแคลเซียมในเลือดเพียงเล็กน้อยจะไปกระตุ้นให้มีการปลดปล่อยแคลเซียมจากกระดูก เพิ่มการดูดซึมแคลเซียมจากลำไส้พร้อมกับลดการสูญเสียทางปัสสาวะ หรือขณะที่ร่างกายอยู่ภาวะที่มีการซ่อมแซมกระดูกที่แตกหักก็จะเกิดการดูดซึมแคลเซียมเข้าไปในกระแสเลือดเพิ่มมากขึ้น กระบวนการที่เกิดขึ้นตามที่กล่าวมาแล้วมีลักษณะของสมดุลไดนามิกทั้งสิ้น<br />สมดุลเคมีนอกจากจะเกิดขึ้นในระบบต่างๆของร่างกายตามที่กล่าวมาแล้ว ยังเกิดกับปรากฎการณ์ต่างๆในธรรมชาติอีกด้วย เช่น วัฎจักรของคาร์บอน อะตอมของคาร์บอนมีบทบาทสำคัญในกระบวนการทางเคมีต่างๆ ทั้งในสิ่งมีชีวิตและสิ่งไม่มีชีวิต ทำให้เกิดสารประกอบของคาร์บอนจำนวนมาก สารประกอบของคาร์บอนอาจจะสะสมในรูปของมวลชีวภาพ สารอินทรีย์ที่ตกตะกอนทับถมกัน หรือในรูปของคาร์บอเนตในหินปูนในเปลือกหอยและปะการัง<br />สารประกอบของคาร์บอนจะมีการหมุนเวียนกลับสู่บรรยากาศและแหล่งน้ำได้โดยกระบวนการหายใจ การเผาไหม้และการเน่าเปื่อย เมื่อ CO2 ถูกปล่อยออกมาในบรรยากาศ บางส่วนจะคงอยู่ในบรรยากาศ บางส่วนจะละลายลงในแหล่งน้ำ มหาสมุทร หรือละลายในน้ำฝนแล้วซึมลงดิน ปริมาณของแก๊ส CO2 ในบรรยากาศกับในแหล่งน้ำบนพื้นโลกจะอยู่ในภาวะสมดุลกัน<br />การเพิ่มปริมาณ CO2 ให้กับบรรยากาศจะมีผลให้เกิดการละลายของ CO2 ลงในแหล่งน้ำมากขึ้น เพื่อลดผลของการรบกวนสมดุลตามหลักของเลอชาเตอลิเอ ซึ่งในที่สุดก็จะปรับเข้าสู่สมดุลใหม่ การละลายน้ำของแก๊ส CO2 เป็นสาเหตุสำคัญที่ทำให้น้ำในธรรมชาติมีสภาพเป็นกรด ปัจจุบันแก๊ส CO2 ในบรรยากาศมีปริมาณเพิ่มขึ้น เพราะว่ามีการเผาไหม้เชื้อเพลิงจำนวนมากในกระบวนการผลิตทางอุตสาหกรรม การขับเคลื่อนยามพาหนะที่ใช้สัญจร และในการดำรงชีวิตประจำวัน รวมทั้งการทำลายป่า มีผลทำให้ฝนที่ตกลงมาและน้ำในแหล่งต่างๆมีความเป็นกรดเพิ่มขึ้น ปฏิกิริยาจากการละลายของ CO2 ที่ทำให้มีสภาพความเป็นกรดเป็นดังนี้<br />สภาพความเป็นกรดของน้ำในสิ่งแวดล้อมทำให้เกิดปรากฏการณ์ต่างๆ ตัวอย่างที่พบเห็นในธรรมชาติ เช่น การเกิดหินงอกและหินย้อน ซึ่งเกิดจากน้ำที่มีสภาพความเป็นกรดไหลซึมผ่านพื้นดินและทำปฏิกิริยากับหินปูน จะได้ผลิตภัณฑ์เป็นแคลเซียมไฮโดรเจนคาร์บอเนต แคลเซียมไฮโดรเจนคาร์บอเนตจะละลายในน้ำที่ซึมผ่านจนอิ่มตัวและอาจมีความเข้มข้นถึง 200 ppm เมื่อน้ำไหลซึมผ่านเข้าไปในถ้ำซึ่งมี CO2 ในบรรยากาศเข้มข้นประมาณร้อยละ 0.04 สารละลายดังกล่าวจะอยู่ในภาวะสมดุลกับบรรยากาศภายในถ้ำ ปฏิกิริยาที่เกิดขึ้นเป็นดังนี้<br />ในปฏิกิริยารวมข้างต้นนี้ ปฏิกิริยาไปข้างหน้าถึงการละลายน้ำของ CO2 จากอากาศหรือจากการเน่าเปื่อยของซากพืชและสัตว์ในดิน ทำให้น้ำมีสภาพเป็นกรด ถ้าสารละลายมีความเป็นกรดสูงจะละลาย Ca CO2 จากแหล่งหินปูนได้ดี หินปูนจึงเกิดการผุกร่อนเป็นโพรงหรือถ้ำได้ เมื่อสารละลายไหลไปตามผนังหรือหยดลงบนพื้นถ้ำและน้ำหรือ CO2 สามารถแยกตัวออกจากสารละลายได้ ปฏิกิริยาจะเกิดย้อนกลับ เป็นผลให้มี Ca CO2 ตกผลึกแยกออกมาเกิดเป็นหินย้อยตามเพดานหรือหินงอกบนพื้นภายในถ้ำ ปฏิกิริยาย้อนกลับเกิดได้ช้ามาก ต้องใช้เวลานานหลายร้อยหลายพันปีกว่าจะได้หินย้อยและหินงอกที่มีสภาพใหญ่โตและสวยงามดังที่เห็นดังรูป<br />ความรู้เพิ่มเติมเม็ดเลือดแดงของคนมีรูปร่างกลมแบน ตรงกลางเว้าทั้งสองด้าน ไม่มีนิวเคลียส ขนาดเส้นผ่านศูนย์กลาง 7.5 ถึง 8.5 ไมครอน เม็ดเลือดแดงมีสีแดง เนื่องจากฮีโมโกลบินที่มีธาตุเหล็กเป็นองค์ประกอบ ดังนั้นการขาดธาตุเหล็กทำให้ไม่สามารถสร้างเม็ดเลือดแดงและอาจเกิดโรคโลหิตจางได้ ในเลือด 1ลูกบาศก์มิลลิเมตร เพศชายจะมีเม็ดเลือดแดงอยู่ประมาณ 5 - 5.5 ล้านเม็ด ส่วนเพศหญิงจะมีประมาณ 4.5 – 5 ล้านเม็ด ไขกระดูกจะสร้างเม็ดเลือดแดงขึ้นมาทดแทนทุกวันประมาณร้อยวะ 1 ของจำนวนนี้ เม็ดเลือดแดงมีอายุเฉลี่ยประมาณ 100 – 120 วัน<br />มวลชีวภาพ (biomass)หมายถึง อินทรีย์สารจากพืชและสัตว์ ซึ่งเมื่อนำไปผ่านกระบวนการย่อยสลายด้วยความร้อนหรือกระบวนการทางชีวเคมี จะเปลี่ยนไปเป็นพลังงาน ตัวอย่างมวลชีวภาพที่ใช้เป็นแหล่งพลังงานได้แก่ ไม้ วัสดุเหลือทิ้งทางการเกษตร มูลสัตว์<br />พาราทอร์โมน หรือพาราไทรอยด์ ฮอร์โมน (PTH)เป็นฮอร์โมนที่สร้างจากต่อมพาราไทรอยด์ มีหน้าที่หลักในการควบคุมภาวสมดุลของแคลเซียมและฟอสฟอรัสในร่างกาย ซึ่งได้แก่- การเคลื่อนย้ายแคลเซียมและฟอสฟอรัสออกจากกระดูกและการดูดซึมกลับ- การเพิ่มการดูดซึมกลับของแคลเซียมที่ไต- การเพิ่มการดูดซึมของแคลเซียมที่ลำไส้- การลดการดูดซึมของฟอสฟอรัสที่ไต<br />สารบัญ <br />หน้า<br />การเปลี่ยนแปลงที่ผันกลับได้1<br />การเปลี่ยนแปลงที่ทำให้เกิดภาะสมดุล4- สมดุลในปฏิกิริยาเคมี9<br />ความสัมพันธ์ระหว่างความเข้มข้นของสารต่างๆ ณ ภาวะสมดุล10<br />-ค่าคงที่สมดุลกับสมการเคมี10<br /> -การคำนวณเกี่ยวกับค่าคงที่สมดุล14<br />ปัจจัยที่มีผลต่อภาวะสมดุล15<br />-การเปลี่ยนแปลงความเข้มข้น15<br />-การเปลี่ยนแปลงความดันและอุณหภูมิ17<br />สมดุลเคมีในสิ่งมีชีวิตและสิ่งแวดล้อม19<br />

×