3DPrinting_Suresh

774 views
434 views

Published on

3dprintconfny14

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
774
On SlideShare
0
From Embeds
0
Number of Embeds
5
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

3DPrinting_Suresh

  1. 1. New Design Paradigms for 3D Printing Krishnan Suresh Associate Professor Mechanical Engineering
  2. 2. CAD SketchPad (MIT; 1963)
  3. 3. CAD: Underlying Philosophy Influenced by traditional manufacturing Controlled Complexity 3D Printing: Complexity is Free
  4. 4. Simple vs Complex 3D Printing Geometric complexity is free Controlled Complexity
  5. 5. Why Complexity? Why design complex parts? - Aesthetics - Optimal - Assembly-free (3ders.com) (mmsonline.com) (bathsheba.com)
  6. 6. Optimal Design & Complexity ? Stronger and lighter (but more complex) (3ders.com)
  7. 7. How to design such optimal parts? Optimal Designs ~ Complex & Beautiful “For the first time, our capacity to manufacture has exceeded our capacity to design” - Opening remark, 2013 ISAT/DARPA Workshop Conventional CAD?
  8. 8. Example Remove material, but keep it stiff! A B ?
  9. 9. Visualize in 3-D
  10. 10. Idea!
  11. 11. Idea!!
  12. 12. Idea!!
  13. 13. Level Set
  14. 14. 2D Example PareTO Software: www.ersl.wisc.edu
  15. 15. Michell Truss Optimal & Beautiful
  16. 16. Topology Optimization (3D) 60% weight 50% weight 16 6% weight
  17. 17. Hook Design • Strong • Lite • Controlled complexity Geometric complexity is free
  18. 18. New design tools for 3d printing will emerge
  19. 19. Simulation Questions Conventional FEA: Incapable! Can I print? Will it break?
  20. 20. Optimal Design Design Space Finite Element Analysis (FEA) Optimal? Change Topology No 100’s of iterations! 20 Conventional FEA: Incredibly slow!
  21. 21. Optimal Design Size Optistruct Intel Xeon, 12 core, 92 GB (180,60,30) 20 hours
  22. 22. New Simulation Methods for High Performance Computing
  23. 23. CPU vs. GPU Cache RAM GPU Memory 50~1000 GFLOP GPUCPU 10~50 GFLOP (1~12 cores) (100~2000 cores)
  24. 24. GPU Off-the-shelf PCI hardware ($100 - $500) Vendors: NVidia, ATI,
  25. 25. Trends in Computing Computing Speed Memory Speed Memory starved computation Takes more time to fetch 2 numbers than to multiply (Brodtkorb 13)
  26. 26. New simulation tools for 3d printing will emerge
  27. 27. Optimal Designs PareTO Intel i7, 8 cores, 8 GB 42 mins Size Optistruct Intel Xeon, 12 core, 92 GB (180,60,30) 20 hours PareTO Nvidia GTX 480, 1.5 GB 4 mins UW-Madison
  28. 28. PareTOWorks (SolidWorks Integrated) suresh@engr.wisc.edu
  29. 29. Real-time Design
  30. 30. Topology Optimization
  31. 31. Topology Optimization Minimize weight within design-space subject to stress constraints under 4 different load-conditions!
  32. 32. 450 Entries!
  33. 33. PareTO: Maximize Stiffness Optimal design for Maximizing Stiffness (30% vol fraction) Time taken: 8 mins Laptop CPU: I7 with 480M GPU
  34. 34. PareTO: Maximize Strength Optimal design for Maximizing Strength (30% vol fraction) Time taken: 14 mins Laptop CPU: I7 with 480M GPU Optimal topology
  35. 35. Going beyond 3D Printing
  36. 36. Bridge Problem
  37. 37. Bridge Problem V = 30% 1 min 10 secs
  38. 38. Airframe Seat
  39. 39. Wheel Support
  40. 40. Designing Braces for Buildings
  41. 41. Acknowledgements Graduate Students NSF UW-Madison Kulicke and Soffa Luvata Design Concepts Publications available at www.ersl.wisc.edu suresh@engr.wisc.edu

×