Honors - Dna 1112

442 views
361 views

Published on

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
442
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
12
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Honors - Dna 1112

  1. 1. Molecular Biology Honors Biology Edgar
  2. 2. DNA Replication
  3. 3. Exonuclease
  4. 4. Fig. 16-UN5
  5. 5. Fig. 16-13 Single-strand binding Primase proteins Topoisomerase 3 5 RNA 3 primer 5 5 3 Helicase
  6. 6. Fig. 16-16b6 3 5 5 3 Template strand 3 5 RNA primer 3 1 5 Okazaki 3 fragment 5 3 5 1 3 5 3 2 1 5 5 3 3 5 2 1 5 3 3 1 5 2 Overall direction of replication
  7. 7. Fig. 16-16a Overview Origin of replication Leading strand Lagging strand Lagging strand 2 1 Leading strand Overall directions of replication
  8. 8. Helicase
  9. 9. Topoisomerase and Helicase
  10. 10. Fig. 20-3-1 Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end
  11. 11. Fig. 20-3-2 Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end 2 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. One possible combination
  12. 12. Fig. 20-3-3 Restriction site DNA 5 3 3 5 1 Restriction enzyme cuts sugar-phosphate backbones. Sticky end 2 DNA fragment added from another molecule cut by same enzyme. Base pairing occurs. One possible combination 3 DNA ligase seals strands. Recombinant DNA molecule
  13. 13. Fig. 20-9a TECHNIQUE Mixture of Power DNA mol- source ecules of – Cathode Anode + different sizes Gel 1 Power source – + Longer molecules 2 Shorter molecules
  14. 14. Fig. 20-9b RESULTS
  15. 15. Fig. 20-10 Normal -globin allele Normal Sickle-cell allele allele 175 bp 201 bp Large fragment DdeI DdeI DdeI DdeI Large fragment Sickle-cell mutant -globin allele 376 bp 376 bp Large fragment 201 bp 175 bpDdeI DdeI DdeI (a) DdeI restriction sites in normal and (b) Electrophoresis of restriction fragments sickle-cell alleles of -globin gene from normal and sickle-cell alleles
  16. 16. Restriction Enzyme Lab• HINTS: • Lambda DNA/PstI:• pMAP is 5615bp • You should not be• There are able to see beyond – 2 PstI sites. the 805bp band. – 1 HpaI site. • Fine the 11,490bp – 1 SspI site and the 805bp as reference.
  17. 17. Transcription and Translation
  18. 18. Gene Regulation
  19. 19. Fig. 18-6 Signal NUCLEUS Chromatin Chromatin modification DNA Gene available for transcription Gene Transcription RNA Exon Primary transcript Intron RNA processing Tail Cap mRNA in nucleus Transport to cytoplasm CYTOPLASM mRNA in cytoplasm Translation Degradation of mRNA Polypeptide Protein processing Active protein Degradation of protein Transport to cellular destination Cellular function
  20. 20. Fig. 18-8-1 Poly-A signal sequence Enhancer Proximal Termination (distal control elements) control elements region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter
  21. 21. Fig. 18-8-2 Poly-A signal sequence Enhancer Proximal Termination (distal control elements) control elements region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Transcription Primary RNA Exon Intron Exon Intron Exon Cleaved 3 end transcript 5 of primary transcript Poly-A signal
  22. 22. Fig. 18-8-3 Poly-A signal sequence Enhancer Proximal Termination (distal control elements) control elements region Exon Intron Exon Intron Exon DNA Upstream Downstream Promoter Transcription Primary RNA Exon Intron Exon Intron Exon Cleaved 3 end transcript 5 of primary RNA processing transcript Intron RNA Poly-A signal Coding segment mRNA 3 Start Stop 5 Cap 5 UTR codon codon 3 UTR Poly-A tail
  23. 23. Fig. 18-9-1 Activators Promoter Gene DNA Enhancer Distal control TATA element box
  24. 24. Fig. 18-9-2 Activators Promoter Gene DNA Enhancer Distal control TATA element box General transcription factors DNA-bending protein Group of mediator proteins
  25. 25. Fig. 18-9-3 Activators Promoter Gene DNA Enhancer Distal control TATA element box General transcription factors DNA-bending protein Group of mediator proteins RNA polymerase II RNA polymerase II Transcription initiation complex RNA synthesis
  26. 26. Fig. 18-10 Enhancer Promoter Control Albumin gene elements Crystallin gene LIVER CELL LENS CELL NUCLEUS NUCLEUS Available activators Available activators Albumin gene not expressed Albumin gene expressed Crystallin gene not expressed Crystallin gene expressed (a) Liver cell (b) Lens cell
  27. 27. Fig. 18-2 Precursor Feedback inhibition trpE gene Enzyme 1 trpD gene Regulation of gene expression Enzyme 2 trpC gene trpB gene Enzyme 3 trpA gene Tryptophan (a) Regulation of enzyme (b) Regulation of enzyme activity production
  28. 28. Fig. 18-3a trp operon Promoter Promoter Genes of operon DNA trpR trpE trpD trpC trpB trpA Regulatory Operator gene Start codon Stop codon 3 mRNA RNA mRNA 5 5 polymerase E D C B A Protein Inactive Polypeptide subunits that make up repressor enzymes for tryptophan synthesis (a) Tryptophan absent, repressor inactive, operon on
  29. 29. Fig. 18-3b-1 DNA No RNA made mRNA Protein Active repressor Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off
  30. 30. Fig. 18-3b-2 DNA No RNA made mRNA Protein Active repressor Tryptophan (corepressor) (b) Tryptophan present, repressor active, operon off
  31. 31. Fig. 18-4a Regulatory Promoter gene Operator DNA lacI lacZ No RNA made 3 mRNA RNA 5 polymerase Active Protein repressor (a) Lactose absent, repressor active, operon off
  32. 32. Fig. 18-4b lac operon DNA lacI lacZ lacY lacA RNA polymerase 3 mRNA mRNA 5 5 Protein -Galactosidase Permease Transacetylase Allolactose Inactive (inducer) repressor (b) Lactose present, repressor inactive, operon on
  33. 33. Fig. 18-5 Promoter Operator DNA lacI lacZ CAP-binding site RNA polymerase Active binds and cAMP CAP transcribes Inactive Inactive lac CAP repressor Allolactose (a) Lactose present, glucose scarce (cAMP level high): abundant lac mRNA synthesized Promoter Operator DNA lacI lacZ CAP-binding site RNA polymerase less likely to bind Inactive CAP Inactive lac repressor (b) Lactose present, glucose present (cAMP level low): little lac mRNA synthesized
  34. 34. Epigenetics
  35. 35. Epigenetics Introhttp://learn.genetics.utah.edu/content/epigenetics/intro/
  36. 36. GenomicImprinting
  37. 37. RNAi
  38. 38. RNAInducedSilencingComplex
  39. 39. Vascular Endothelial Growth Factor
  40. 40. Genetic Engineering & Cloning
  41. 41. Cloning
  42. 42. Fig. 20-4-1 TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction Sticky Gene of interest site ends ampR gene Bacterial Hummingbird plasmid DNA fragments
  43. 43. Fig. 20-4-2 TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction Sticky Gene of interest site ends ampR gene Bacterial Hummingbird plasmid DNA fragments Nonrecombinant plasmid Recombinant plasmids
  44. 44. Fig. 20-4-3 TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction Sticky Gene of interest site ends ampR gene Bacterial Hummingbird plasmid DNA fragments Nonrecombinant plasmid Recombinant plasmids Bacteria carrying plasmids
  45. 45. Fig. 20-4-4 TECHNIQUE Hummingbird cell Bacterial cell lacZ gene Restriction Sticky Gene of interest site ends ampR gene Bacterial Hummingbird plasmid DNA fragments Nonrecombinant plasmid Recombinant plasmids Bacteria carrying plasmids RESULTS Colony carrying non- Colony carrying recombinant recombinant plasmid plasmid with disrupted lacZ gene with intact lacZ gene One of many bacterial clones
  46. 46. mtDNA Theories, Molecular Basisand Real-World Application
  47. 47. “The Other Genome” mtDNA
  48. 48. Endosymbiotic Theory
  49. 49. DNA Laboratory at Milton Academy • Isolate DNA from cheek cells. • Polymerase Chair Reaction • Electrophoresis • Sequence DNA
  50. 50. mtDNA Control Region
  51. 51. Polymerase Chain Reaction
  52. 52. PCRhttp://www.dnalc.org/resources/spotlight/index.html
  53. 53. Taq DNA Polymerase
  54. 54. Fig. 20-8a 5 3 TECHNIQUE Target sequence Genomic DNA 3 5
  55. 55. Fig. 20-8b 1 Denaturation 5 3 3 5 2 Annealing Cycle 1 yields Primers 2 molecules 3 Extension New nucleo- tides
  56. 56. Fig. 20-8c Cycle 2 yields 4 molecules
  57. 57. Fig. 20-8d Cycle 3 yields 8 molecules; 2 molecules (in white boxes) match target sequence
  58. 58. http://www.youtube.com/watch?v=x5yPkxCLads&feature=relatedhttp://www.youtube.com/watch?v=CQEaX3MiDow
  59. 59. Gel Electrophoresis
  60. 60. DNA Sequencing
  61. 61. Chain Termination Methods Sanger Methods
  62. 62. Dye-terminator sequencing
  63. 63. Fig. 20-12 TECHNIQUE DNA Primer Deoxyribonucleotides Dideoxyribonucleotides (template strand) (fluorescently tagged) dATP ddATP dCTP ddCTP dTTP ddTTP DNA polymerase dGTP ddGTP DNA (template Labeled strands strand) Shortest Longest Direction of movement Longest labeled strand of strands Detector Laser Shortest labeled strand RESULTS Last base of longest labeled strand Last base of shortest labeled strand
  64. 64. Fig. 20-12a TECHNIQUE DNA Primer Deoxyribonucleotides Dideoxyribonucleotides (template strand) (fluorescently tagged) dATP ddATP dCTP ddCTP DNA dTTP ddTTP polymerase dGTP ddGTP
  65. 65. Fig. 20-12b TECHNIQUE DNA (template Labeled strands strand) Shortest Longest Direction of movement Longest labeled strand of strands Detector Laser Shortest labeled strand RESULTS Last base of longest labeled strand Last base of shortest labeled strand
  66. 66. Trace File
  67. 67. Amplification and clonal selection
  68. 68. Kate BatorConnor Johnson
  69. 69. High-throughput sequencing Next-Gen Sequencing
  70. 70. mtDNA Sequencehttp://www.dnalc.org/view/15979-A-mitochondrial-DNA-sequence.html

×