Biology - Cells, organic molecules, diffusion 1112

901 views
794 views

Published on

Published in: Technology, Education
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
901
On SlideShare
0
From Embeds
0
Number of Embeds
22
Actions
Shares
0
Downloads
45
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Biology - Cells, organic molecules, diffusion 1112

  1. 1. Cells ~ Biology Edgar
  2. 10. Muscle Tissue Stomach Epithelium Beta Cells – Islets of Langerhans Adipose Tissue
  3. 13. Organic Macromolecules
  4. 21. Monomers and Polymers
  5. 29. LACTASE : LCT (Single Mutation) AMYLASE : AMY Gene (multiple copies)
  6. 36. High-Fructose Corn Syrup
  7. 37. Enzyme
  8. 49. Concept Check <ul><li>Two molecules that can cross a lipid bilayer without help from membrane proteins are O 2 and CO 2 . What properties allow this to occur? </li></ul>
  9. 54. Osmosis
  10. 58. Concept Check <ul><li>This diagram represents osmosis of water across a semipermeable membrane. The U-tube on the right shows the results of the osmosis. What could you do to level the solutions in the two sides of the right hand U-tube? </li></ul><ul><ul><li>Add more water to the left hand side. </li></ul></ul><ul><ul><li>Add more water to the right hand side. </li></ul></ul><ul><ul><li>Add more solute to the left hand side. </li></ul></ul><ul><ul><li>Add more solute to the right hand side. </li></ul></ul>0
  11. 59. Answer <ul><li>This diagram represents osmosis of water across a semipermeable membrane. The U-tube on the right shows the results of the osmosis. What could you do to level the solutions in the two sides of the right hand U-tube? </li></ul><ul><ul><li>c) Add more solute to the left hand side. </li></ul></ul>0
  12. 60. Concept Check <ul><li>Why would water molecules need a transport protein (aquaporin) to move rapidily and in large quantities across a cell membrane? </li></ul>
  13. 65. Concept Check <ul><li>If a Paramecium were to swim from a hypotonic environment to an isotonic one, would the activity of its contractile vacuole increase or decrease? Why? </li></ul>
  14. 70. Jmol
  15. 73. Enzymes
  16. 75. Storage
  17. 76. Structural
  18. 77. Transport
  19. 78. Hormonal
  20. 79. Receptor
  21. 80. Contractile & Motor
  22. 81. Defensive
  23. 82. Enzymes
  24. 87. Make A Prediction
  25. 88. Temperature and pH?
  26. 98. LE 4-4a Rough endoplasmic reticulum Smooth endoplasmic reticulum Nucleus Flagellum Lycosome Centriole Not in most plant cells Peroxisome Microtubule Intermediate filament Microfilament Cytoskeleton Golgi apparatus Ribosomes Plasma membrane Mitochondrion
  27. 99. LE 4-4b Not in animal cells Golgi apparatus Nucleus Central vacuole Chloroplast Cell wall Mitochondrion Peroxisome Plasma membrane Rough endoplasmic reticulum Smooth endoplasmic reticulum Ribosomes Microtubule Intermediate filament Microfilament Cytoskeleton
  28. 100. LE 4-5 Chromatin Nucleolus Pore Nucleus Two membranes of nuclear envelope Rough endoplasmic reticulum Ribosomes
  29. 101. LE 4-7 Smooth ER Rough ER Nuclear envelope Ribosomes Smooth ER Rough ER TEM 45,000 
  30. 102. LE 4-10a-1 Plasma membrane Rough ER Lysosomes Transport vesicle (containing inactive hydrolytic enzymes) Golgi apparatus
  31. 103. LE 4-10a-2 Plasma membrane Rough ER Lysosomes Transport vesicle (containing inactive hydrolytic enzymes) Golgi apparatus Engulfment of particle “ Food” Food vacuole Digestion
  32. 104. LE 4-10a-3 Plasma membrane Rough ER Lysosomes Transport vesicle (containing inactive hydrolytic enzymes) Golgi apparatus Engulfment of particle “ Food” Food vacuole Digestion Lysosome engulfing damaged organelle
  33. 105. LE 4-10b Lysosome Nucleus TEM 8,500 
  34. 106. LE 4-10c Lysosome containing two damaged organelles TEM 42,500  Mitochondrion fragment Peroxisome fragment
  35. 107. LE 4-13 Transport vesicle from ER to Golgi Rough ER Nucleus Smooth ER Nuclear envelope Golgi apparatus Lysosome Vacuole Plasma membrane Transport vesicle from Golgi to plasma membrane
  36. 108. LE 4-12 LM 650  Central vacuole Nucleus Contractile vacuoles Nucleus Chloroplast Colorized TEM 8,700 
  37. 109. LE 4-14 Chloroplast Stroma Inner and outer membranes Granum Intermembrane space TEM 9,750 
  38. 110. LE 4-15 Mitochondrion Intermembrane space Outer membrane Inner membrane Cristae Matrix TEM 44,880 
  39. 111. Figure 4.17a
  40. 112. Figure 4.17b
  41. 113. LE 4-18a Vacuole Walls of two adjacent plant cells Plasmodesmata Layers of one plant cell wall Cytoplasm Plasma membrane
  42. 115. Table 4.19
  43. 116. Table 4.19
  44. 117. Table 4.19
  45. 118. Resting Potential
  46. 122. Action Potential
  47. 125. Synapse

×