MongoDB at FrozenRails
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

MongoDB at FrozenRails

  • 5,217 views
Uploaded on

Introduction to MongoDB given at FrozenRails 2010.

Introduction to MongoDB given at FrozenRails 2010.

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
5,217
On Slideshare
5,169
From Embeds
48
Number of Embeds
3

Actions

Shares
Downloads
70
Comments
0
Likes
10

Embeds 48

http://www.slideshare.net 45
http://lj-toys.com 2
http://l.lj-toys.com 1

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • Collection (logical groupings of documents) <br /> Indexes are per-collection <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • <br />
  • blog post <br /> twitter <br />

Transcript

  • 1. open-­‐source,  high-­‐performance,   document-­‐oriented  database Mike  Dirolf      •      10gen,  Inc.      •      @mdirolf      •      http://dirolf.com
  • 2. Non-relational Operational Stores (“NoSQL”) New Gen. OLAP RDBMS (vertica,  aster,  greenplum) (Oracle,  MySQL)
  • 3. NoSQL Really Means: non-­‐relational,  next-­‐generation   operational  datastores  and  databases
  • 4. no  joins + no  complex  transactions Horizontally Scalable Architectures
  • 5. no  joins + no  complex  transactions New Data Models
  • 6. New Data Models improved  ways  to  develop  applications?
  • 7. Data Models Key  /  Value memcached,  Dynamo Tabular BigTable Document  Oriented MongoDB,  CouchDB
  • 8. • memcached scalability  &  performance • key/value • RDBMS depth  of  functionality
  • 9. JSON-style Documents represented  as  BSON {“hello”:  “world”} x16x00x00x00x02hello x00x06x00x00x00world x00x00 http://bsonspec.org
  • 10. Flexible “Schemas” {“author”:  “eliot”, {“author”:  “mike”,  “text”:  “...”,  “text”:  “...”}  “tags”:  [“mongodb”]}
  • 11. Dynamic Queries
  • 12. Atomic Update Modifiers
  • 13. Focus on Performance
  • 14. Replication master slave master master slave slave slave slave master master slave master
  • 15. Auto-sharding Shards mongod mongod mongod ... Config mongod mongod mongod Servers mongod mongod mongod mongos mongos ... client
  • 16. Many Supported Platforms / Languages
  • 17. Best Use Cases T Scaling  Out Caching The  Web High  Volume
  • 18. Less Good At highly  transactional ad-­‐hoc  business  intelligence problems  that  require  SQL
  • 19. A Quick Aside _id special  key present  in  all  documents unique  across  a  Collection any  type  you  want
  • 20. Post {:author  =>  “mike”,  :date  =>  Time.new,  :text  =>  “my  blog  post...”,  :tags  =>  [“mongodb”,  “ruby”]}
  • 21. Comment {:author  =>  “eliot”,  :date  =>  Time.new,  :text  =>  “great  post!”}
  • 22. New Post post  =  {:author  =>  “mike”,    :date  =>  Time.new,    :text  =>  “my  blog  post...”,    :tags  =>  [“mongodb”,  “ruby”]} db[“posts”].save(post)
  • 23. Embedding a Comment c  =  {:author  =>  “eliot”,    :date  =>  Time.new,    :text  =>  “great  post!”} db[“posts”].update({:_id  =>  post[:_id]},                        {:$push  =>  {:comments  =>  c}})
  • 24. Posts by Author db[“posts”].find(:author  =>  “mike”)
  • 25. Last 10 Posts db[“posts”].find    .sort([[:date,  :desc]])    .limit(10)
  • 26. Posts Since April 1 april_1  =  Time.utc(2010,  4,  1) db[“posts”].find(:date  =>  {:$gt  =>  april_1})
  • 27. Posts Ending With ‘Ruby’ db[“posts”].find(:text  =>  /Ruby$/)
  • 28. Posts With a Tag db[“posts”].find(:tags  =>  “mongodb”) ...and Fast (multi-­‐key  indexes) db[“posts”].create_index(“tags”)
  • 29. Indexing / Querying on Embedded Docs (dot  notation) db[“posts”].create_index(“comments.author”) db[“posts”].find(“comments.author”  =>  “eliot”)
  • 30. Counting Posts db[“posts”].count db[“posts”].find(:author  =>  “mike”).count
  • 31. Basic Paging page  =  2 page_size  =  15 db[“posts”].find.limit(page_size)                                .skip(page  *  page_size)
  • 32. Migration: Adding Titles (just  start  adding  them) post  =  {:author  =>  “mike”,                :date  =>  Time.new,                :text  =>  “another  blog  post...”,                :tags  =>  [“mongodb”],              :title  =>  “MongoDB  for  Fun  and  Profit”} post_id  =  db[“posts”].save(post)
  • 33. Advanced Queries $gt,  $lt,  $gte,  $lte,  $ne,  $all,  $in,  $nin $not,  $mod,  $size,  $exists,  $type,  $elemMatch db[“posts”].find(:$where  =>  “this.author  ==  ‘mike’  ||                                                          this.title  ==  ‘foo’”)
  • 34. MongoMapper, Mongoid, et. al.
  • 35. Other Cool Stuff aggregation  and  map/reduce capped  collections unique  indexes mongo  shell GridFS geo
  • 36. Download MongoDB http://www.mongodb.org and  let  us  know  what  you  think @mdirolf        @mongodb