• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Ch4.7 Polygons and Angles
 

Ch4.7 Polygons and Angles

on

  • 403 views

 

Statistics

Views

Total Views
403
Views on SlideShare
403
Embed Views
0

Actions

Likes
1
Downloads
6
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Ch4.7 Polygons and Angles Ch4.7 Polygons and Angles Document Transcript

    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 Chapter 4.7 Polygons and Angle Measure Polygons are named for the number of sides they have. 3 sides = triangle 8 sides = octagon 4 sides = quadrilateral 9 sides = nonagon 5 sides = pentagon 10 sides = decagon 6 sides = hexagon n sides = n-gon 7 sides = heptagon
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 Vocab Vertex ­ intersection of    two sides VERTEX Diagonal ­ segment between       two non­consecutive DIAGONAL       vertices Key Vocab REGULAR A polygon is regular if it is equilateral AND equiangular Name the following shapes by the number of sides. Are these shapes regular? Example: What is the perimeter of a regular nonagon with a side length of 5 cm?
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 CONVEX vs. CONCAVE Convex ­ the diagonals are INSIDE the polygon Concave ­ part of the diagonals are OUTSIDE of the polygon By drawing in all of the diagonals from a vertex in a convex polygon, we can cut the shape into triangles
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 How many diagonals can be drawn from a vertex in a convex polygon? # of sides # of Diagonals # of Triangles How many DIAGONALS can be drawn in an n­sided polygon? How many TRIANGLES are in an n­sided polygon? If a polygon has n sides, we can draw n­2 triangles inside of it. 5 sides 3 triangles If each of these triangles has  180 degrees.
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 IMPORTANTE If a convex polygon has n sides, then the sum of interior angles is: (n ­ 2) 180 Example: (n ­ 2) 180 Find the sum of interior angles for the following convex polygons Hexagon Heptagon Octagon Pentagon Decagon Example What is the measure of ONE interior angle of a regular pentagon? Sum of interior angles (5 ­ 2)  180 3  180 5400 The measure of ONE angle is: 540 ÷ 5 = 1080 Example: What is the measure of ONE interior angle of a regular hexagon?
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 The sum of exterior angles for ANY convex polygon is ALWAYS 3600 t x t + x + y + z + w = 360 w y z Example: Find the sum of exterior angles for the following convex polygons Hexagon Heptagon Octagon Pentagon Decagon Example: What is the measure of ONE exterior angle of a regular heptagon?
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 Solve for x 2x 1050 750 x 350 Solve for n n0 1130 370 n0
    • Ch4.7_PolygonsAndAngles.notebook October 31, 2011 Formula Recap Sum of Interior <s Measure of ONE Interior < (n­2) x 180 (n­2) x 180 n Sum of Exterior <s Measure of ONE Exterior < 3600 3600 n Page 180: #6­15, 19­21