Upcoming SlideShare
×

# Ch.14.1 Trigonometric Functions

• 161 views

More in: Technology , Education
• Comment goes here.
Are you sure you want to
Be the first to comment
Be the first to like this

Total Views
161
On Slideshare
0
From Embeds
0
Number of Embeds
0

Shares
5
0
Likes
0

No embeds

### Report content

No notes for slide

### Transcript

• 1. Ch.14.1_TrigonometricFunctions.notebook March 01, 2012 Chapter 14.1  Trigonometric Functions Reference angles Opposite side ­ side ACROSS from ref. angle Adjacent side ­ side NEXT TO ref. angle Hypotenuse ­ side ACROSS from the 900 angle SOH ­ CAH ­ TOA i p y o d y a p d n p p s j p n p j e o o i a o g o a s t n c t e s c i e e e e n i e t n n n t t n e u t u e t s s e e Sin(angle) = Opposite side  Hypotenuse Adjacent side Cos(angle) =   Hypotenuse Opposite side Tan(angle) =  Adjacent side 1
• 2. Ch.14.1_TrigonometricFunctions.notebook March 01, 2012 5 3 4 Find the following  Sin(  )= Cos(  )= Tan(  )= Solve for x and y 420 4 x y 2
• 3. Ch.14.1_TrigonometricFunctions.notebook March 01, 2012 Inverse B Trig 13 5 A 12 Inverse trig functions are used to find angle  measures Sin( ) Sin­1( ) Cos( ) Cos­1( ) Tan( ) Tan­1( ) Sin(A) =  Sin­1(   ) = A Find angle B with inverse trig 3
• 4. Ch.14.1_TrigonometricFunctions.notebook March 01, 2012 What are you trying to find? Side Length Angle Measure Sin( angle ) = opp/hyp Sin­1( opp/hyp ) = angle Cos( angle ) = adj/hyp Cos­1( adj/hyp ) = angle Tan( angle ) = opp/adj Tan­1( opp/adj ) = angle Do you know Do you know the hypotenuse? the hypotenuse? No Yes No Yes Tan( ) Sin( ) Tan­1(     ) Sin­1(     ) Cos( ) Cos­1(     ) 4
• 5. Ch.14.1_TrigonometricFunctions.notebook March 01, 2012 Homework Page 616 1­22 all 5