Philosophy and Atrificial Inteligence

1,370 views

Published on

A short glance at the most important philosophical contributions having influence on Artificial Inteligence

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
1,370
On SlideShare
0
From Embeds
0
Number of Embeds
44
Actions
Shares
0
Downloads
100
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Philosophy and Atrificial Inteligence

  1. 1. What is AI?? (philosophy and AI/SW) Maciej Dąbrowski Digital Enterprise Research Institute National University of Ireland, Galway maciej . dabrowski @deri.org
  2. 2. Outline <ul><li>Motivation </li></ul><ul><li>The Godel incompletness theorem </li></ul><ul><li>The contribution of Turing </li></ul><ul><li>Penrose and the human mind </li></ul><ul><li>Conclusion </li></ul>
  3. 3. Motivation <ul><li>What is AI?? </li></ul><ul><li>C an be defined as the study of methods by which a computer can simulate aspects of human intelligence . </li></ul><ul><li>design a computer that might be able to reason for itself. </li></ul><ul><li>development of systems that can work with natural language . </li></ul><ul><li>ability of the computer to search knowledge in a database for the best possible reply to a question </li></ul>
  4. 4. Motivation <ul><li>What is Semantic Web ?? </li></ul><ul><li>Keep things relatively simple, do not seek absolute completness </li></ul><ul><li>The Semantic Web is an evolution of the World Wide Web in which information is machine processable , thus permitting browsers or other software agent s to find , share and combine information for us more easily. </li></ul>
  5. 5. Motivation <ul><li>What does Semantic Web has in common with Artificial Inteligence?? </li></ul><ul><li>Is it possible to achieve goals of AI?? </li></ul><ul><li>If yes – what are the concequences?? </li></ul><ul><li>Is it possible to achieve goals of SW?? </li></ul><ul><li>What are we trying to create?? </li></ul>
  6. 6. The Godel incompletness theorem <ul><li>He concentrated on research on formal approach. </li></ul><ul><li>Godel proved that in every consistent, sufficiently general axiomatic system: </li></ul><ul><li>there always exists a true proposition which cannot be deduced f r om the axioms </li></ul><ul><li>( Godel's incompleteness theorem ); </li></ul><ul><li>the consistency of the axioms cannot be deduced from the axioms ( Godel's consistency theorem ). </li></ul><ul><li>There exist no proof for the Godel proposition </li></ul><ul><li>Kurt Gödel </li></ul><ul><li>Born: April 28, 1906 </li></ul><ul><li>Died: January 14, 1978 </li></ul><ul><li>Field: Mathematics </li></ul><ul><li>Institution: Princeton University </li></ul>
  7. 7. The Godel incompletness theorem <ul><li>Proof: </li></ul><ul><li>If false  contradiction in the axiomatic system (impossible) </li></ul><ul><li>If true  the preposition is true and theorem is correct </li></ul><ul><li>Consequences: </li></ul><ul><li>Formal approach is not sufficient </li></ul><ul><li>Mathematical meaning </li></ul><ul><li>Incompletness theorem stands </li></ul><ul><li>Kurt Gödel </li></ul><ul><li>Born: April 28, 1906 </li></ul><ul><li>Died: January 14, 1978 </li></ul><ul><li>Field: Mathematics </li></ul><ul><li>Institution: Princeton University </li></ul>
  8. 8. The contribution of Turing <ul><li>The turing test </li></ul><ul><li>difference between artificial and human inteligence </li></ul><ul><li>The Turing machine: </li></ul><ul><li>Infinite speed and memory, state machine </li></ul><ul><li>any finite sequence of processing steps could be </li></ul><ul><li>carried out in an infinitesimally small amount of time. </li></ul><ul><li>Is there a general algorithm that can predict whether the Turing machine will stop with a given algorithm?? </li></ul><ul><li>If true  all mathematical problems can be solved by formal approach </li></ul><ul><li>Alan Turing </li></ul><ul><li>Born: June 23, 1912 </li></ul><ul><li>Died: June 7, 1954 </li></ul><ul><li>Field: Mathematics, Logics </li></ul><ul><li>Computer Science </li></ul>
  9. 9. The contribution of Turing <ul><li>Conclusion </li></ul><ul><li>Given the huge processing power you still cannot resolve all mathematical problems </li></ul><ul><li>Existing AI cannot do what human can </li></ul><ul><li>Is it possible to get computers to solve mathematical meaning? </li></ul><ul><li>If yes  what does human mind is?? </li></ul><ul><li>Alan Turing </li></ul><ul><li>Born: June 23, 1912 </li></ul><ul><li>Died: June 7, 1954 </li></ul><ul><li>Field: Mathematics, Logics </li></ul><ul><li>Computer Science </li></ul>
  10. 10. Penrose and the human mind <ul><li>Try to look from the point of view of human mind </li></ul><ul><li>There are mathematical results on the truth of certain prepositions, which can be recognized by any mathematician, but can not formally be proven </li></ul><ul><li>The ideal computing device, the so-called Turing machine, can only be used for solving problems by a formal approach. </li></ul><ul><li>Roger Penrose </li></ul><ul><li>Born: August 8, 1931 </li></ul><ul><li>Field: Mathematics, Logics </li></ul><ul><li>Computer Science </li></ul><ul><li>Institution: University of Oxford </li></ul>
  11. 11. Penrose and the human mind <ul><li>Conclusion </li></ul><ul><li>The existance of ‘seeing’ and ‘intuition’ are often necessary to find a solution of a problem </li></ul><ul><li>Human mind has definite processing power and it is still better than Turing machine </li></ul><ul><li>Is that mean that the formal approach is not sufficient? </li></ul><ul><li>Roger Penrose </li></ul><ul><li>Born: August 8, 1931 </li></ul><ul><li>Field: Mathematics, Logics </li></ul><ul><li>Computer Science </li></ul><ul><li>Institution: University of Oxford </li></ul>
  12. 12. Conclusion <ul><li>Formal approach is not sufficient </li></ul><ul><li>What is AI then? </li></ul><ul><li>Does GUT exist? </li></ul><ul><li>How this affect the Semantic Web? </li></ul><ul><li>What are the goals? </li></ul><ul><li>We cannot compare human to computer!! </li></ul>
  13. 13. References <ul><li>Alfred Driessen – Philosophical Consequences pf the Godel Theorem </li></ul><ul><li>Riccardo Bruni - G o del, Turing, the Undecidability Results and the Nature of Human Mind </li></ul><ul><li>http://pl.wikipedia.org/wiki/Roger_Penrose </li></ul><ul><li>http://pl.wikipedia.org/wiki/Alan_Turing </li></ul><ul><li>http://pl.wikipedia.org/wiki/GUT/ </li></ul>

×