Your SlideShare is downloading. ×
0
Clastic Hierarchies and Eustasy
Spring 2005

Professor Christopher G. St. C. Kendall
kendall@sc.edu
777.2410

“Clastic Hie...
Clastic Depositional Systems

Their Response
to
Base Level Change
Based, in part, on classroom lectures
by David Barbeau &...
Lecture Series Overview
Sequence stratigraphy & stratigraphic surfaces
 Basics: Ideal ‘sequence’ of Vail et al 1977 &
ass...
Sedimentary rocks are the
product of the generation,
transport, deposition, and
diagenesis of detritus and
solutes derived...
Sedimentary rocks are the
product of the creation, transport,
deposition, and diagenesis of
detritus and solutes derived f...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Depositional Systems


depositional system: assemblage of multiple process-related
sedimentary facies assemblages, common...
Types of Depositional Systems
marine  ocean, sea
transitional  part land, part ocean
terrestrial  land

“Clastic Hierar...
Clastic Depositional Systems
Terr
estr
ial

Tran
sitio
n al

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Mari
ne
Clastic Depositional Systems
Terr
estr
ial

Tran
sitio
na l

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Mari
ne
Clastic Depositional Systems
Terr
estr
ial

Tran
sitio
na l

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Mari
ne
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Characteristics of Clastic System
 Critical stratigraphic signals of

system?
 Geomorphologic & tectonic setting
 Domin...
Types of Depositional Systems
marine  ocean, sea
terrestrial  land
transitional  part land, part ocean

“Clastic Hierar...
Types of Depositional Systems
marine  ocean, sea
transitional  part land, part ocean
terrestrial  land

“Clastic Hierar...
Marine Depositional Systems
 shallow/nearshore

tide-dominated
wave-dominated
reef
 shelf/platform

carbonate
clastic
 ...
Marine Depositional Systems
 wave-dominated coasts
 tide-dominated coasts
 fluvial-dominated coasts (deltas)
 carbonat...
Coastal Depositional Systems

Form proximal to shorelines
 Geographically narrow, geologically important
 Fluid flow tra...
Coast Types
Dalrymple et al, 1992

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coast Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Dalrymple et al,
1992
Tidal Range and Coastal Morphology

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Hayes, 1979
Coast
Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Marine Depositional Systems
 wave-dominated coasts
 tide-dominated coasts
 fluvial-dominated coasts (deltas)
 carbonat...
Waves & Wave Periods

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Characteristics of Beach Systems





Sediments coarsen upward from marine shales
Linear sand bodies parallel to basin...
Vertical stacking of shore line sediments

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coast
Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Beach Face - South Carolina Foreshore
Note High Energy Planar Beds

Photo: G. Voulgaris
“Clastic Hierarchies”
Christopher ...
Trough Cross-bed Current Ripples

Ordovician – Near Winchester
Kentucky
“Clastic Hierarchies”
Christopher G. St. C. Kendal...
Offshore Coastal Profile - Hummocky

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coastal Profile

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Geomorphology
of Coast

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coastal Morphology

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coastal Profile and Lithofacies

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coastal Lithofacies & Architecture

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Aigner & Reineck,
1982
Coastal
Lithofacies

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Reineck & Singh,
1980
Coastal Lithofacies
Walker, 1984

Progradation

Transgression

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Inlet
Hayes, 1979
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Tide Versus Wave Domination

Hubbard et al., 1979

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coastal Morphology

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wave Dominated - Texan Coast

Note Storm Washover
Serrated Back Barrier

“Clastic Hierarchies”
Christopher G. St. C. Kenda...
Wave Dominated - Texan Coast

r
ve r
o
sh rrie
Wa Ba
orm ack
St d B
o te a te
N rr
“Clastic Hierarchies”
Se

Christopher G...
Wave Dominated - Texan Coast

r
ve r
o
sh rrie
Wa Ba
orm ack
St d B
o te a te
N rr
Se
“Clastic Hierarchies”
Christopher G....
Wave Dominated - Texan Coast

Note Storm Washover
Serrated Back Barrier
“Clastic Hierarchies”
Christopher G. St. C. Kendal...
Note Storm Washover
On a Back Barrier

Pennsylvanian
Wave Dominated Coast
Coast
Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Chenier Coast – Gulf of Carpentaria

Note Channels Reworking
Chenier Plain

“Clastic Hierarchies”
Christopher G. St. C. Ke...
Note Channels Reworking
Barrier Islands
Delta Mouth Bar - Kentucky

Note Incised Surface Of Reworked Bar

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Tidal, Storm or Tsunami Channel

Note Incised Surface Beneath Channel
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Characteristics of Sequence Boundary
(SB) from well logs, core & outcrop
Defined by erosion or incision of underlying floo...
Characteristics of Sequence Boundary
(SB) from well logs, core & outcrop
Defined by erosion or incision of underlying floo...
Beach Ridges: St. Phillips Island, SC

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Progradation & Transgressive Architectures

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Kraft & John, 1979
Sea-Level Changes

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Reading, 1986
Tidal Bundles

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Visser, 1980
x
ix
atri
atr
dm
dm
mu
mu

0
0
0 /5
0 /5
d5
d5
Mu
Mu

es
tes
nat
iina
om
om
r ed
r ed
dp
dp
San
San

d n
d iin
San
San

d&...
Asymmetric Current Ripples

Upper Mississippian – Pennington Formation
Pound Gap
“Clastic Hierarchies”
Christopher G. St. ...
Base Level Change on Coast

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Tidal Geomorphology

Kraft et al, 1987

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Transitional Depositional
Systems
 Estuaries
 Deltas

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Characteristics of Estuary Systems





Sediments coarsen upward from marine shales
Sand bodies perpendicular to basin...
Estuarine Lithofacies

Horne et al, 1978
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Marine Depositional Systems
 Wave-dominated coasts
 Tide-dominated coasts
 Fluvial-dominated coasts (deltas)
 Carbonat...
Deltaic Depositional Systems

Form where rivers with large drainages meet standing
water bodies (~basins)
 Very large sed...
Characteristics of Deltaic Systems





Sediments coarsen upward from marine shales
Sand bodies form tongues perpendic...
Coast Types
Dalrymple et al, 1992

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coast
Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lena River Delta - Russia

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Shatt
al Arab
Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Atachafalya Delta - USA

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Amazon Delta - Brazil

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Nile Delta - Egypt

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta Types
 River-dominated

Small tidal range, weak storms and large
sediment flux build delta out into basin
 Tide-do...
Delta Processes


Depositional patterns and geomorphology
depend on the relative dominance of three
competing processes a...
Delta Processes
Relative influence of inertia, friction & buoyancy is a
function of:
 Density contrasts

Homopycnal flow ...
Delta Processes


Inertia-dominated deltas
deep water, steep slopes, high river flow velocity
moderate sediment transport...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta Morphology

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
River-Dominated Deltas

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lobe-Switching

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Inter-distributary bays

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Mahakam River-Dominated Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wave-dominated Grijalva Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Bramaputra Delta - India

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Tide-Dominated Niger Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Tide-Dominated Niger Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta
Successions

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta Succession

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wave-Dominated
Delta Succession

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta Collapse

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delta Collapse

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Fan-Deltas

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deltaic Succession

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deltaic Succession

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deltaic Succession

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Types of Depositional Systems
marine  ocean, sea
terrestrial  land
transitional  part land, part ocean

“Clastic Hierar...
Marine Depositional Systems
 wave-dominated coasts
 tide-dominated coasts
 fluvial-dominated coasts (deltas)
 carbonat...
Deep Sea
Depositional
Systems

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deep Sea Depositional Systems

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Characteristics of Deepwater Systems





Sediments fine upward from marine fans
Sand bodies form lobes perpendicular ...
Deep Sea Fan Depositional Systems
Form in the moderate to deep ocean, down-dip of
submarine canyons and often deltas
 Lar...
Bengal Fan & Ganges-Brahmaputra Delta

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine Canyons and Deep Sea Fans

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine Canyons

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine Canyons and Deep Sea
Fans

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine Fan Morphology

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine
Fan Types

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Turbidity Currents  Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Gravity Flows: Turbidity Currents

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Turbidity Currents & Hemipelagic Sediment

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deep Water Fan Deposits

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deep Water Fan Deposits

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coarse-grained Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Coarse-grained Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Proximal Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Distal Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Soft-Sediment Deformation

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Submarine Channels

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Delaware Mountains – Basin Fans

Deepwater Channel

Cha n
nel S
a n ds
“Clastic Hierarchies”
Christopher G. St. C. Kendall...
Brushy Canyon Group - Base of Slope
Permian Basin

Channel Fill
Turbidites

“Clastic Hierarchies”
Christopher G. St. C. Ke...
Brushy Canyon Group - Base of Slope Permian Basin
Margin of submarine fan channel incised
into "overbank". Channel fill wi...
Pelagic Depositional Systems
Form in the open ocean or open (large) lakes and seas
 Small sediment flux, very low sedimen...
Pelagic Sediments

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deep Marine Sedimentation

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Pelagic Sediments

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Calcareous Microfossils

“Clastic Hierarchies”
Christopher G. St. C. Kendall
CCD

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Abyssal Plains

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Siliceous Microfossils

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Siliceous Microfossils  Chert

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Siliceous Microfossils  Chert

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Aeolian Dust

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Aeolian Dust

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Aeolian Dust

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Dropstones

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Types of Depositional Systems
marine  ocean, sea
transitional  part land, part ocean
terrestrial  land

“Clastic Hierar...
Terrestrial Depositional Systems
Alluvial Fan
 Fluvial
 Glacial
 Eolian
 Lacustrine
 Playa


“Clastic Hierarchies”
C...
Terrestrial Depositional Systems
Alluvial Fan
 Fluvial
 Glacial
 Eolian
 Lacustrine
 Playa


“Clastic Hierarchies”
C...
Alluvial Fan System Characteristics





Sediments fine upward within fan lobes
Sand bodies form lobes perpendicular t...
Alluvial Fan Depositional Systems
Form upon exit of drainage basin from a mountain front
 Mix of sediment gravity flow & ...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
exit gorge

active lobes
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Drainage & Depositional Basins

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial Fan Architecture

Spearing, 1974

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial Fans

Blair & McPherson. 1994

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial Fan Architecture

Kelly & Olson, 1993
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial and Fluvial Fans


‘Stream-dominated’ Alluvial Fans D = ~10 Km; S = 5-15º



‘Gravity-flow’ Alluvial Fans D = ~...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial Fan Stratigraphy

Nemec & Steel, 1984

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Stream-dominated AF Stratigraphy

Boothroyd, 1972

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Gravity-Flow AF Stratigraphy

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Blair, 1987
Alluvial Fan Architecture

Gloppen
“Clastic Hierarchies” & Steel, 1980
Christopher G. St. C. Kendall
Terrestrial Depositional Systems
Alluvial Fan
 Fluvial
 Glacial
 Eolian
 Lacustrine
 Playa


“Clastic Hierarchies”
C...
Fluvial System Characteristics





Sediments fine upward within channel fill
Sand bodies fine distally from channels
...
Fluvial Depositional Systems

Dominant conduit from regions of sediment
production (mountains) to sediment storage
(oceans...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Fluvial Channel Patterns

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Fluvial Channel Patterns

Schumm & Khan, 1972

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Meandering Streams

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Meandering Fluvial System

Allen, 1964
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Thalwegs

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Avulsion

Cross et al., 1989
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Meandering Fluvial Architecture

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Braided Fluvial Architecture

“Clastic Hierarchies” Nemec, 1992
Christopher G. St. C. Kendall
Fluvial Channels

Hirst, 1991

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Maturity

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Fluvial Characterization

“Clastic Hierarchies”
Christopher G. St. C. Kendall

Schumm, 1981
Fluvial Channel Patterns

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Orton & Reading, 1993
Terrestrial Depositional Systems
fluvial
 alluvial fan
 glacial
 eolian
 lacustrine
 playa


“Clastic Hierarchies”
C...
GLACIERS
AND
GLACIATION
Past Glacial Periods
 Pre-Cambrian at end of Neoproterozoic eon

End of the Ordovician
 Late Carboniferous (Pennsylvania...
Glacial Periods

“Clastic Hierarchies”
Christopher G. St. C. Kendall
The Snowball Earth
During last ice age max, 21,000 years ago, North
America & Europe covered by glaciers over 2
kilometers...
Paul Hoffman & Daniel Schrag - Snowball Earth
Sun abruptly cooled or Earth tilted on its axis or
experienced an orbital bl...
Snowball
Earth
Rocky cliffs
along
Namibia's
Skeleton
Coast.
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Snowball
Earth
Drop
Stones

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial System Characteristics
Signal extremes in local climate & sea level position
 Stratigraphic markers of glacial ev...
Simplified Glacial Systems signals
 Sediment signal a mix of:

Glacial carried & dumped in moraines
Water born fluvial se...
Glacial Setting
Currently forms 10% of earths’s surface, Pleistocene
reached 30%, but in Pre Cambrian could have
reached 1...
Adelie Penguins Taking a Dive

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial Erosion
 Under glacier

Abrasion & plucking
Bedrock polished & striated
Rock flour washes out of glacier
Polishin...
Roche Moutone – Ice Sheet Plucking

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial Scarring
Of Bedrock
Findelen
Glacier
Switzerland
Matterhorn
In
Background
“Clastic Hierarchies”
Christopher G. St....
Glacial Sediments


Facies of continental glacial settings
Grounded Ice Facies
Glaciofluvial facies
Glacial lacustrine fa...
Glacial Deposition
 Till

Unsorted debris in fine matrix
 Erratic
 Moraine- body of till

Lateral Moraine
Medial Morain...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Twenty Mile Medial Moraine

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Robinson Tumbling Glacier Brit. Columbia

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Ground and End Moraines

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial
Lakes
Ireland
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial Sediments

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Varves

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glaciation Subdividing Surfaces

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Glacial Sediments


Facies of continental glacial settings
Grounded Ice Facies
Glaciofluvial facies
Glacial lacustrine fa...
Glacial Systems - Conclusions
Signal extremes in local climate & sea level position
 Stratigraphic markers of glacial eve...
Simplified Conclusions Glacial Systems
 Sediment signal a mix of:

Glacial carried & dumped moraines
Water born fluvial s...
AEOLIAN
AND
DESERTS
Going

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Aeolian System – Desert & Coast
 Distribution of Aeolian systems – Holocene &

Ancient
 Deserts: Transport & Depositiona...
Simplified Desert Systems signals
 Sediment signal a mix of:

Aeolian sediment – dunes and sheets
Water born intermittent...
Desert
 Region with low precipitation

Usually less than 25 cm rain per year
 Distribution

Most related to descending a...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall

Earth's
General
Circulation
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Rain Shadow Deserts

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Deserts – Dune Factories
Common characteristics: Lack of through-flowing streams
 Internal drainage
 Local base levels
...
Deserts – Depositional Systems
Dunes fed by water transported
sediment
 Margin rimmed by incised seasonal streams

(Wadii...
Bajada
“Pediment”
&
Alluvial
Fans
Namibia
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Alluvial fans – Death
Valley

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Salt Pan & Alluvial Fans – Death Valley

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Sediment Source - Deserts & Coasts
 Abundant sediment supply (sand, silt)
 Favorable wind regimes
 Grain transport in w...
Wind Erosion and Transportation
 Sand

Moves along ground- saltation
Sandstorms
Sandblasting up to 1 meter
–

Ventifact

...
Sand Movement

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Brice Canyon - Utah

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Arches National Park – Utah

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Erosion and Transportation
 Dust storms
 Sand

Moves along ground- saltation
Sandstorms
Sandblasting up to 1 meter
...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Action
 Strong in desert because:

Low humidity
Great temperature ranges
More effective because of lack of
vegetatio...
Wind Erosion and Transportation
 Sand

Moves along ground- saltation
Sandstorms
Sandblasting up to 1 meter
–

Ventifact

...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Erosion and Transportation
 Sand

Moves along ground- saltation
Sandstorms
Sandblasting up to 1 meter
–

Ventifact

...
Red Sea Dust Storm

RedSeaDustStorm

“Clastic Hierarchies”
Christopher G. St. C. Kendall
North Africa - Sea Dust Storm

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Erosion and Transportation
 Dust storms

Wind-blown dust accumulates in the deep
ocean floor at a rate of 0.6 x 1014...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Loess

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Deposition
 Loess
 Gravel Pavements

Desert varnish & “petroglyphs”
 Sand Dunes

Well-sorted, well-rounded sand gr...
Desert Pavement Formation

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Deposition
 Loess
 Gravel Pavements

Desert varnish & “petroglyphs”
 Sand Dunes

Well-sorted, well-rounded sand gr...
Wind Deposition
 Loess
 Gravel Pavements

Desert varnish & “petroglyphs”
 Sand Dunes

Well-sorted, well-rounded sand gr...
Barchan Dunes - Jordan

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Zion National Park - Utah

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Deposition
 Loess
 Gravel Pavements

Desert varnish & “petroglyphs”
 Sand Dunes

Well-sorted, well-rounded sand gr...
Dune Evolution

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Hierarchies exhibited by aeolian
and associated sediments
 Grains
 Ripples
 Dunes
 Interdune unconfined sheets
 Confi...
Mechanisms of Aeolian Transportation
Rolling: 2-4 mm
 Surface creep
 20-25% of sand moves by grains shifted by
impacting...
Mice Tracks &
Ripples
White Sands, NM

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Ripples on Dune

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Wind Deposition
 Types of dunes

Barchan
Transverse dune
Parabolic dune
Longitudinal dune

“Clastic Hierarchies”
Christop...
Salt Pan – West Texas, El Capitan
BARCHAN

LONGITUDINAL

TRANSVERSE

PARABOLIC

BARCHINOID

STAR

“Clastic Hierarchies”
Ch...
Star Dunes – Namibia
North Africa - Sea Dust Storm

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Sahara – Barchans & Camels

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Navajo Sandstone

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Cross-bedded Navaho Sandstone

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Navajo
Sandstone

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Quaternary of UAE – Stokes Surface

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Navajo
Sandstone
Base level change
punctuates the
sandstone with
erosion surfaces!

“Clastic Hierarchies”
Christopher G. S...
Navajo
Sandstone

Base level change punctuates the
sandstone with erosion surfaces!
“Clastic Hierarchies”
Christopher G. S...
Navajo
Sandstone

Base level change punctuates the
sandstone with erosion surfaces!
“Clastic Hierarchies”
Christopher G. S...
Some characteristics of deserts
 Stream channels normally dry

covered with sand & gravel
Narrow canyons with vertical wa...
Aeolian Sediment - Critical Character
Aeolian sediments evidenced by x-bedding with
high angle (30-34 degrees)
 Horizonta...
Aeolian Sediment - Critical Character
Small & large scale cross bedding, with multiple
orientations within horizontal bedd...
Aeolian sediment interpretation
Analyse sedimentology & internal architecture
with outcrop, cores and downhole imaging
 I...
Conclusions - Desert Systems - Simplified
 Sediment signal a mix of:

Aeolian sediment – dunes and sheets
Water born inte...
LAKE
AND
ORGANICS
Lakes
Are
Ephemeral
Lacustrian Systems
 Critical characteristics of

system?
 Geomorphologic & tectonic setting
 Dominant sedimentary proce...
Lake Systems – Simplified Signals
 Sediment signal a mix of:
Lake Center –sheets and incised & unconfined turbidite cycle...
Significance of Lake Systems
Signal extremes in local climate & geochemistry
 Stratigraphic markers (Organics trap radioa...
Lake Geomorphologic & Tectonic Setting
Temporary features forming 1% of earths’s land surface, filling:-






Major r...
Mix of
high
salinity to
fresh
water,
organic
rich to
evaporiti
c

Initial
Breakup
A Salt
Filled
Basin
May be
Created

“Cla...
Lake Tanganyika

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lake Tanganyika

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lake Tanganyika
Lake levels have varied historical and earlier
 Fossil and living stromatolites abundant around
the margi...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lakes formed
between
splitting
continents

“Clastic Hierarchies”
Christopher G. St. C. Kendall
I so
la t
Be
lt o ed lin
d r a f i n te e a r
ina rio
ge r

Restricted
Entrances
To Sea

Organic Rich Lake Fill

Regional
...
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lakes flanking Major Mountain Chains

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Caspian and the Arral Sea
 Bodies of fresh to saline water trapped on

craton behind major mountain chains
 Tend to act ...
Caspian

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Aral Sea

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Great Lakes

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Great Lakes
 Bodies of fresh water trapped on glacially

scoured depressions on craton behind
glacial moraines
 Act as t...
Switzerland

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Ice Dammed Lake – Alaska

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lake Response to Stratification

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Lake Sedimentary facies
 Sedimentary signal like that of a foreshortened

Marine setting
 Narrow shores with beaches and...
Lake Sedimentary facies









Presence of freshwater fossils
Lake sediments commonly better sorted than fluvial ...
Lacustrian sedimentary geometries
 Shore marked by linear beaches
 Coarse to fine slope
 Deeper water lake laminae and ...
Green
River
Lake

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River Lake Fill

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green
River
–
Systems
&
Facies
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River Section

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River Section

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River
Section

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River
Fauna & Flora

“Clastic Hierarchies”
Christopher G. St. C. Kendall
East African Lake Margin

“Clastic Hierarchies”
Christopher G. St. C. Kendall
“Clastic Hierarchies”
Christopher G. St. C. Kendall
Green River Section

“Clastic Hierarchies”
Christopher G. St. C. Kendall
Conclusions - Lake Systems
 Sediment signal a mix of:
Lake Center –sheets and incised & unconfined turbidite cycles
Margi...
Lakes
Are
Ephemeral
End of the Lecture

Lets go for lunch!!!
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Clastic depositional system
Upcoming SlideShare
Loading in...5
×

Clastic depositional system

1,420

Published on

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
1,420
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
244
Comments
0
Likes
2
Embeds 0
No embeds

No notes for slide

Transcript of "Clastic depositional system"

  1. 1. Clastic Hierarchies and Eustasy Spring 2005 Professor Christopher G. St. C. Kendall kendall@sc.edu 777.2410 “Clastic Hierarchies” Christopher G. St. C. Kendall
  2. 2. Clastic Depositional Systems Their Response to Base Level Change Based, in part, on classroom lectures by David Barbeau & Chris Kendall
  3. 3. Lecture Series Overview Sequence stratigraphy & stratigraphic surfaces  Basics: Ideal ‘sequence’ of Vail et al 1977 & associated terminology  Clastic system response to changing sea level and rates of sedimentation - with movie  Carbonate systems response to changing sea level and rates of sedimentation - with movie  Exercises – Sequence stratigraphy of carbonates and clastics from chronostratigraphy, seismic, outcrop and well log character  “Clastic Hierarchies” Christopher G. St. C. Kendall
  4. 4. Sedimentary rocks are the product of the generation, transport, deposition, and diagenesis of detritus and solutes derived from pre-existing rocks.
  5. 5. Sedimentary rocks are the product of the creation, transport, deposition, and diagenesis of detritus and solutes derived from pre-existing rocks.
  6. 6. “Clastic Hierarchies” Christopher G. St. C. Kendall
  7. 7. Depositional Systems  depositional system: assemblage of multiple process-related sedimentary facies assemblages, commonly identified by the geography in which deposition occurs. EX: nearshore depositional system, deep marine depositional system, glacial depositional system, fluvial depositional system  NB depositional systems are: modern features used to interpret ancient sedimentary successions “Clastic Hierarchies” Christopher G. St. C. Kendall
  8. 8. Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
  9. 9. Clastic Depositional Systems Terr estr ial Tran sitio n al “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
  10. 10. Clastic Depositional Systems Terr estr ial Tran sitio na l “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
  11. 11. Clastic Depositional Systems Terr estr ial Tran sitio na l “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
  12. 12. “Clastic Hierarchies” Christopher G. St. C. Kendall
  13. 13. “Clastic Hierarchies” Christopher G. St. C. Kendall
  14. 14. “Clastic Hierarchies” Christopher G. St. C. Kendall
  15. 15. Characteristics of Clastic System  Critical stratigraphic signals of system?  Geomorphologic & tectonic setting  Dominant sedimentary processes  Facies Subdividing surfaces Lithology Sedimentary structures Geometries – Confined versus open Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall
  16. 16. Types of Depositional Systems marine  ocean, sea terrestrial  land transitional  part land, part ocean “Clastic Hierarchies” Christopher G. St. C. Kendall
  17. 17. Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
  18. 18. Marine Depositional Systems  shallow/nearshore tide-dominated wave-dominated reef  shelf/platform carbonate clastic  deep marine deep sea fans pelagic “Clastic Hierarchies” Christopher G. St. C. Kendall
  19. 19. Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
  20. 20. Coastal Depositional Systems Form proximal to shorelines  Geographically narrow, geologically important  Fluid flow transport and deposition  Surface waves Tidal waves (not tsunami!) Fluvial input Grain-size decreases with deeper water  Onshore, offshore & longshore sediment transport important  Net sediment input (often from rivers) often leads to progradational geometries  Important for tracking sea-level changes  “Clastic Hierarchies” Christopher G. St. C. Kendall
  21. 21. Coast Types Dalrymple et al, 1992 “Clastic Hierarchies” Christopher G. St. C. Kendall
  22. 22. Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall Dalrymple et al, 1992
  23. 23. Tidal Range and Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall Hayes, 1979
  24. 24. Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
  25. 25. Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
  26. 26. Waves & Wave Periods “Clastic Hierarchies” Christopher G. St. C. Kendall
  27. 27. Characteristics of Beach Systems     Sediments coarsen upward from marine shales Linear sand bodies parallel to basin margin, serrated margins landward Formed by a mix of waves and tidal currents Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Wells sorted and rounded pure quartz arenites common Sedimentary structures – – – Offshore hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
  28. 28. Vertical stacking of shore line sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
  29. 29. Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
  30. 30. Beach Face - South Carolina Foreshore Note High Energy Planar Beds Photo: G. Voulgaris “Clastic Hierarchies” Christopher G. St. C. Kendall
  31. 31. Trough Cross-bed Current Ripples Ordovician – Near Winchester Kentucky “Clastic Hierarchies” Christopher G. St. C. Kendall
  32. 32. Offshore Coastal Profile - Hummocky “Clastic Hierarchies” Christopher G. St. C. Kendall
  33. 33. Coastal Profile “Clastic Hierarchies” Christopher G. St. C. Kendall
  34. 34. Geomorphology of Coast “Clastic Hierarchies” Christopher G. St. C. Kendall
  35. 35. Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
  36. 36. “Clastic Hierarchies” Christopher G. St. C. Kendall
  37. 37. Coastal Profile and Lithofacies “Clastic Hierarchies” Christopher G. St. C. Kendall
  38. 38. Coastal Lithofacies & Architecture “Clastic Hierarchies” Christopher G. St. C. Kendall Aigner & Reineck, 1982
  39. 39. Coastal Lithofacies “Clastic Hierarchies” Christopher G. St. C. Kendall Reineck & Singh, 1980
  40. 40. Coastal Lithofacies Walker, 1984 Progradation Transgression “Clastic Hierarchies” Christopher G. St. C. Kendall Inlet
  41. 41. Hayes, 1979 “Clastic Hierarchies” Christopher G. St. C. Kendall
  42. 42. Tide Versus Wave Domination Hubbard et al., 1979 “Clastic Hierarchies” Christopher G. St. C. Kendall
  43. 43. “Clastic Hierarchies” Christopher G. St. C. Kendall
  44. 44. Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
  45. 45. Wave Dominated - Texan Coast Note Storm Washover Serrated Back Barrier “Clastic Hierarchies” Christopher G. St. C. Kendall
  46. 46. Wave Dominated - Texan Coast r ve r o sh rrie Wa Ba orm ack St d B o te a te N rr “Clastic Hierarchies” Se Christopher G. St. C. Kendall
  47. 47. Wave Dominated - Texan Coast r ve r o sh rrie Wa Ba orm ack St d B o te a te N rr Se “Clastic Hierarchies” Christopher G. St. C. Kendall
  48. 48. Wave Dominated - Texan Coast Note Storm Washover Serrated Back Barrier “Clastic Hierarchies” Christopher G. St. C. Kendall
  49. 49. Note Storm Washover On a Back Barrier Pennsylvanian Wave Dominated Coast
  50. 50. Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
  51. 51. Chenier Coast – Gulf of Carpentaria Note Channels Reworking Chenier Plain “Clastic Hierarchies” Christopher G. St. C. Kendall
  52. 52. Note Channels Reworking Barrier Islands
  53. 53. Delta Mouth Bar - Kentucky Note Incised Surface Of Reworked Bar “Clastic Hierarchies” Christopher G. St. C. Kendall
  54. 54. Tidal, Storm or Tsunami Channel Note Incised Surface Beneath Channel “Clastic Hierarchies” Christopher G. St. C. Kendall
  55. 55. Characteristics of Sequence Boundary (SB) from well logs, core & outcrop Defined by erosion or incision of underlying flooding surfaces (mfs and TS)  Inferred from interruption in the lateral continuity of these surfaces  “Clastic Hierarchies” Christopher G. St. C. Kendall
  56. 56. Characteristics of Sequence Boundary (SB) from well logs, core & outcrop Defined by erosion or incision of underlying flooding surfaces (mfs and TS)  Inferred from interruption in the lateral continuity of these surfaces  “Clastic Hierarchies” Christopher G. St. C. Kendall
  57. 57. Beach Ridges: St. Phillips Island, SC “Clastic Hierarchies” Christopher G. St. C. Kendall
  58. 58. Progradation & Transgressive Architectures “Clastic Hierarchies” Christopher G. St. C. Kendall Kraft & John, 1979
  59. 59. Sea-Level Changes “Clastic Hierarchies” Christopher G. St. C. Kendall Reading, 1986
  60. 60. Tidal Bundles “Clastic Hierarchies” Christopher G. St. C. Kendall Visser, 1980
  61. 61. x ix atri atr dm dm mu mu 0 0 0 /5 0 /5 d5 d5 Mu Mu es tes nat iina om om r ed r ed dp dp San San d n d iin San San d& d& San San Bedforms Current Ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
  62. 62. Asymmetric Current Ripples Upper Mississippian – Pennington Formation Pound Gap “Clastic Hierarchies” Christopher G. St. C. Kendall
  63. 63. Base Level Change on Coast “Clastic Hierarchies” Christopher G. St. C. Kendall
  64. 64. Tidal Geomorphology Kraft et al, 1987 “Clastic Hierarchies” Christopher G. St. C. Kendall
  65. 65. Transitional Depositional Systems  Estuaries  Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
  66. 66. Characteristics of Estuary Systems     Sediments coarsen upward from marine shales Sand bodies perpendicular to basin margin, narrow landward Formed by a mix of tidal currents and occasional storm waves Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Wells sorted and rounded pure quartz arenites common Sedimentary structures – – – Offshore hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets perpendicular and occasionally parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
  67. 67. Estuarine Lithofacies Horne et al, 1978 “Clastic Hierarchies” Christopher G. St. C. Kendall
  68. 68. “Clastic Hierarchies” Christopher G. St. C. Kendall
  69. 69. “Clastic Hierarchies” Christopher G. St. C. Kendall
  70. 70. Marine Depositional Systems  Wave-dominated coasts  Tide-dominated coasts  Fluvial-dominated coasts (deltas)  Carbonate reefs  Clastic shelves & platforms  Carbonate shelves & platforms  Deepwater fans  Pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
  71. 71. Deltaic Depositional Systems Form where rivers with large drainages meet standing water bodies (~basins)  Very large sediment flux  Fluid & gravity flow transport and deposition  Surface waves Tidal waves (not tsunami!) Fluvial input Turbidity currents & sub-aqueous debris flows Net sediment input often leads to progradational geometries  Delta types depend on tidal range, wave climate, and composition and depths of water in river and basin  “Clastic Hierarchies” Christopher G. St. C. Kendall
  72. 72. Characteristics of Deltaic Systems     Sediments coarsen upward from marine shales Sand bodies form tongues perpendicular to basin margin Formed by a mix of fluvial input, tidal currents and storm waves Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Poorly sorted and irregular litharenites common Sedimentary structures – – – Offshore laminated to hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets perpendicular and occasionally parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
  73. 73. Coast Types Dalrymple et al, 1992 “Clastic Hierarchies” Christopher G. St. C. Kendall
  74. 74. Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
  75. 75. “Clastic Hierarchies” Christopher G. St. C. Kendall
  76. 76. “Clastic Hierarchies” Christopher G. St. C. Kendall
  77. 77. Lena River Delta - Russia “Clastic Hierarchies” Christopher G. St. C. Kendall
  78. 78. Shatt al Arab Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  79. 79. Atachafalya Delta - USA “Clastic Hierarchies” Christopher G. St. C. Kendall
  80. 80. Amazon Delta - Brazil “Clastic Hierarchies” Christopher G. St. C. Kendall
  81. 81. Nile Delta - Egypt “Clastic Hierarchies” Christopher G. St. C. Kendall
  82. 82. Delta Types  River-dominated Small tidal range, weak storms and large sediment flux build delta out into basin  Tide-dominated Large tidal ranges dominate transport, deposition & geomorphology  Wave-dominated Strong and repeated storms rework delta sediment “Clastic Hierarchies” Christopher G. St. C. Kendall
  83. 83. Delta Processes  Depositional patterns and geomorphology depend on the relative dominance of three competing processes at river mouths: Inertia – River water – Basin water Friction – Water vs. substrate – Water vs. water Buoyancy “Clastic Hierarchies” Christopher G. St. C. Kendall
  84. 84. Delta Processes Relative influence of inertia, friction & buoyancy is a function of:  Density contrasts Homopycnal flow – equal density water bodies mix Hyperpycnal flow – higher density sinks below ocean (Yellow) Hypopycnal flow – lower density floats on ocean (Mississippi)  Concentration, grain size and suspended vs. bedload ratio Water depths Mouth Basin  Water discharge  Water inflow velocity “Clastic Hierarchies” Christopher G. St. C. Kendall
  85. 85. Delta Processes  Inertia-dominated deltas deep water, steep slopes, high river flow velocity moderate sediment transport, large flow expansion  Friction-dominated deltas shallow water, low slopes, proximal sediment transport, large bars, limited flow expansion hyperpycnal flow possible  Buoyancy-dominated deltas deep water, hypopycnal flow, large suspended load distant sediment transport, flow rafting  plumes “Clastic Hierarchies” Christopher G. St. C. Kendall
  86. 86. “Clastic Hierarchies” Christopher G. St. C. Kendall
  87. 87. Delta Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
  88. 88. “Clastic Hierarchies” Christopher G. St. C. Kendall
  89. 89. River-Dominated Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
  90. 90. Lobe-Switching “Clastic Hierarchies” Christopher G. St. C. Kendall
  91. 91. Inter-distributary bays “Clastic Hierarchies” Christopher G. St. C. Kendall
  92. 92. Mahakam River-Dominated Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  93. 93. “Clastic Hierarchies” Christopher G. St. C. Kendall
  94. 94. “Clastic Hierarchies” Christopher G. St. C. Kendall
  95. 95. “Clastic Hierarchies” Christopher G. St. C. Kendall
  96. 96. Wave-dominated Grijalva Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  97. 97. Bramaputra Delta - India “Clastic Hierarchies” Christopher G. St. C. Kendall
  98. 98. Tide-Dominated Niger Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  99. 99. Tide-Dominated Niger Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  100. 100. Delta Successions “Clastic Hierarchies” Christopher G. St. C. Kendall
  101. 101. Delta Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
  102. 102. Wave-Dominated Delta Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
  103. 103. Delta Collapse “Clastic Hierarchies” Christopher G. St. C. Kendall
  104. 104. Delta Collapse “Clastic Hierarchies” Christopher G. St. C. Kendall
  105. 105. Fan-Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
  106. 106. Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
  107. 107. Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
  108. 108. Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
  109. 109. Types of Depositional Systems marine  ocean, sea terrestrial  land transitional  part land, part ocean “Clastic Hierarchies” Christopher G. St. C. Kendall
  110. 110. Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
  111. 111. Deep Sea Depositional Systems “Clastic Hierarchies” Christopher G. St. C. Kendall
  112. 112. Deep Sea Depositional Systems “Clastic Hierarchies” Christopher G. St. C. Kendall
  113. 113. Characteristics of Deepwater Systems     Sediments fine upward from marine fans Sand bodies form lobes perpendicular to basin margin Formed by a mix of fluvial input, and turbidite currents Facies Subdivided erosion surfaces formed during – Migrating fan lobe fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenites common Sedimentary structures – Fining upward cycles that coarsen up as depo-center of lobes migrate – Up dip channel cut and fill – Gently seaward dipping thin parallel lobate sheets Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to shore Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Restricted Marine fauna often in over bank shales
  114. 114. Deep Sea Fan Depositional Systems Form in the moderate to deep ocean, down-dip of submarine canyons and often deltas  Large sediment flux, high sedimentation rate, large area  Gravity flow transport and deposition  turbidity currents subaqueous debris flows suspension fall-out Lobes and lobe-switching important  Both coarse and fine grained sediment  Often well-sorted and normally graded  “Clastic Hierarchies” Christopher G. St. C. Kendall
  115. 115. Bengal Fan & Ganges-Brahmaputra Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
  116. 116. Submarine Canyons and Deep Sea Fans “Clastic Hierarchies” Christopher G. St. C. Kendall
  117. 117. “Clastic Hierarchies” Christopher G. St. C. Kendall
  118. 118. Submarine Canyons “Clastic Hierarchies” Christopher G. St. C. Kendall
  119. 119. “Clastic Hierarchies” Christopher G. St. C. Kendall
  120. 120. Submarine Canyons and Deep Sea Fans “Clastic Hierarchies” Christopher G. St. C. Kendall
  121. 121. Submarine Fan Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
  122. 122. “Clastic Hierarchies” Christopher G. St. C. Kendall
  123. 123. “Clastic Hierarchies” Christopher G. St. C. Kendall
  124. 124. “Clastic Hierarchies” Christopher G. St. C. Kendall
  125. 125. “Clastic Hierarchies” Christopher G. St. C. Kendall
  126. 126. Submarine Fan Types “Clastic Hierarchies” Christopher G. St. C. Kendall
  127. 127. Turbidity Currents  Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  128. 128. Gravity Flows: Turbidity Currents “Clastic Hierarchies” Christopher G. St. C. Kendall
  129. 129. Turbidity Currents & Hemipelagic Sediment “Clastic Hierarchies” Christopher G. St. C. Kendall
  130. 130. Deep Water Fan Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
  131. 131. Deep Water Fan Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
  132. 132. Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  133. 133. Coarse-grained Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  134. 134. Coarse-grained Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  135. 135. Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  136. 136. Proximal Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  137. 137. Distal Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
  138. 138. Soft-Sediment Deformation “Clastic Hierarchies” Christopher G. St. C. Kendall
  139. 139. Submarine Channels “Clastic Hierarchies” Christopher G. St. C. Kendall
  140. 140. Delaware Mountains – Basin Fans Deepwater Channel Cha n nel S a n ds “Clastic Hierarchies” Christopher G. St. C. Kendall Kendall Photo
  141. 141. Brushy Canyon Group - Base of Slope Permian Basin Channel Fill Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall Kendall Photo
  142. 142. Brushy Canyon Group - Base of Slope Permian Basin Margin of submarine fan channel incised into "overbank". Channel fill with amalgamation as well as flowage & injection of sand into the surrounding strata of the channel walls. Kendall Photo “Clastic Hierarchies” Christopher G. St. C. Kendall U.S. Highway 62-180 south of Guadalupe Pass
  143. 143. Pelagic Depositional Systems Form in the open ocean or open (large) lakes and seas  Small sediment flux, very low sedimentation rate  Suspended load current transport  Surface waves Tidal waves (not tsunami!) Fluvial input Turbidity currents & sub-aqueous debris flows Suspension fall-out deposition  Fine-grained (clay, mud and silt) deposition  Carbonates Siliciclastic mudstones “Clastic Hierarchies” Christopher G. St. C. Kendall
  144. 144. Pelagic Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
  145. 145. Deep Marine Sedimentation “Clastic Hierarchies” Christopher G. St. C. Kendall
  146. 146. Pelagic Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
  147. 147. Calcareous Microfossils “Clastic Hierarchies” Christopher G. St. C. Kendall
  148. 148. CCD “Clastic Hierarchies” Christopher G. St. C. Kendall
  149. 149. Abyssal Plains “Clastic Hierarchies” Christopher G. St. C. Kendall
  150. 150. Siliceous Microfossils “Clastic Hierarchies” Christopher G. St. C. Kendall
  151. 151. Siliceous Microfossils  Chert “Clastic Hierarchies” Christopher G. St. C. Kendall
  152. 152. Siliceous Microfossils  Chert “Clastic Hierarchies” Christopher G. St. C. Kendall
  153. 153. Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
  154. 154. Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
  155. 155. Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
  156. 156. Dropstones “Clastic Hierarchies” Christopher G. St. C. Kendall
  157. 157. Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
  158. 158. Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
  159. 159. Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
  160. 160. Alluvial Fan System Characteristics     Sediments fine upward within fan lobes Sand bodies form lobes perpendicular to basin margin Formed by a mix of fluvial input, and mass sediment movement Facies Subdivided erosion surfaces formed during – Migrating fan lobe fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenite boulders, gravels and sands common Sedimentary structures – Fining upward cycles that coarsen up as depo-center of lobes progrdes – Up dip channel cut and fill – Gently seaward dipping thin parallel lobate sheets Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to Mt front Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Terrestrial flora can be common in over bank lobes
  161. 161. Alluvial Fan Depositional Systems Form upon exit of drainage basin from a mountain front  Mix of sediment gravity flow & fluid flow depositional processes  Debris flows Hyperconcentrated flows Fluvial channels Sheetfloods Lobe-switching processes produce cone  Radial sediment dispersal  Decreasing grain size downslope  “Clastic Hierarchies” Christopher G. St. C. Kendall
  162. 162. “Clastic Hierarchies” Christopher G. St. C. Kendall
  163. 163. exit gorge active lobes “Clastic Hierarchies” Christopher G. St. C. Kendall
  164. 164. “Clastic Hierarchies” Christopher G. St. C. Kendall
  165. 165. Drainage & Depositional Basins “Clastic Hierarchies” Christopher G. St. C. Kendall
  166. 166. Alluvial Fan Architecture Spearing, 1974 “Clastic Hierarchies” Christopher G. St. C. Kendall
  167. 167. Alluvial Fans Blair & McPherson. 1994 “Clastic Hierarchies” Christopher G. St. C. Kendall
  168. 168. Alluvial Fan Architecture Kelly & Olson, 1993 “Clastic Hierarchies” Christopher G. St. C. Kendall
  169. 169. Alluvial and Fluvial Fans  ‘Stream-dominated’ Alluvial Fans D = ~10 Km; S = 5-15º  ‘Gravity-flow’ Alluvial Fans D = ~10 Km; S = 5-15º  Talus Cones D < 1 Km; S = 10-30º  Fluvial Megafans D = 50 -100s Km; S < 1º “Clastic Hierarchies” Christopher G. St. C. Kendall
  170. 170. “Clastic Hierarchies” Christopher G. St. C. Kendall
  171. 171. Alluvial Fan Stratigraphy Nemec & Steel, 1984 “Clastic Hierarchies” Christopher G. St. C. Kendall
  172. 172. “Clastic Hierarchies” Christopher G. St. C. Kendall
  173. 173. “Clastic Hierarchies” Christopher G. St. C. Kendall
  174. 174. “Clastic Hierarchies” Christopher G. St. C. Kendall
  175. 175. Stream-dominated AF Stratigraphy Boothroyd, 1972 “Clastic Hierarchies” Christopher G. St. C. Kendall
  176. 176. Gravity-Flow AF Stratigraphy “Clastic Hierarchies” Christopher G. St. C. Kendall Blair, 1987
  177. 177. Alluvial Fan Architecture Gloppen “Clastic Hierarchies” & Steel, 1980 Christopher G. St. C. Kendall
  178. 178. Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
  179. 179. Fluvial System Characteristics     Sediments fine upward within channel fill Sand bodies fine distally from channels Formed by a mix of fluvial bedload, and fine suspended sediment Facies Subdivided erosion surfaces formed during – Migrating channel fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenite gravels, sands and shales common Sedimentary structures – Fining upward cycles that fill channels – Up dip channel cut and fill – Gently dipping thin parallel lobate sheets perpendicular to channels Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to channels Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Terrestrial flora can be common in over bank sediments
  180. 180. Fluvial Depositional Systems Dominant conduit from regions of sediment production (mountains) to sediment storage (oceans, basins)  Characterized by channel pattern  Meandering Braided Anastomozing  Characterized by sediment load Bedload Suspended load Mixed load  Unidirectional sediment dispersal “Clastic Hierarchies” Christopher G. St. C. Kendall
  181. 181. “Clastic Hierarchies” Christopher G. St. C. Kendall
  182. 182. Fluvial Channel Patterns “Clastic Hierarchies” Christopher G. St. C. Kendall
  183. 183. Fluvial Channel Patterns Schumm & Khan, 1972 “Clastic Hierarchies” Christopher G. St. C. Kendall
  184. 184. Meandering Streams “Clastic Hierarchies” Christopher G. St. C. Kendall
  185. 185. Meandering Fluvial System Allen, 1964 “Clastic Hierarchies” Christopher G. St. C. Kendall
  186. 186. Thalwegs “Clastic Hierarchies” Christopher G. St. C. Kendall
  187. 187. Avulsion Cross et al., 1989 “Clastic Hierarchies” Christopher G. St. C. Kendall
  188. 188. Meandering Fluvial Architecture “Clastic Hierarchies” Christopher G. St. C. Kendall
  189. 189. Braided Fluvial Architecture “Clastic Hierarchies” Nemec, 1992 Christopher G. St. C. Kendall
  190. 190. Fluvial Channels Hirst, 1991 “Clastic Hierarchies” Christopher G. St. C. Kendall
  191. 191. Maturity “Clastic Hierarchies” Christopher G. St. C. Kendall
  192. 192. Fluvial Characterization “Clastic Hierarchies” Christopher G. St. C. Kendall Schumm, 1981
  193. 193. Fluvial Channel Patterns “Clastic Hierarchies” Christopher G. St. C. Kendall
  194. 194. Orton & Reading, 1993
  195. 195. Terrestrial Depositional Systems fluvial  alluvial fan  glacial  eolian  lacustrine  playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
  196. 196. GLACIERS AND GLACIATION
  197. 197. Past Glacial Periods  Pre-Cambrian at end of Neoproterozoic eon End of the Ordovician  Late Carboniferous (Pennsylvanian] through Permian  Pleistocene  “Clastic Hierarchies” Christopher G. St. C. Kendall
  198. 198. Glacial Periods “Clastic Hierarchies” Christopher G. St. C. Kendall
  199. 199. The Snowball Earth During last ice age max, 21,000 years ago, North America & Europe covered by glaciers over 2 kilometers thick, sea level dropped 120 meters. Global chill : land & sea ice covered 30 %t of Earth, more than at other times in last 500 million years  Near end of Neoproterozoic eon (1000-543 million years ago), glaciation immediately preceded first appearance of recognizable animal life some 600 million years ago  “Clastic Hierarchies” Christopher G. St. C. Kendall
  200. 200. Paul Hoffman & Daniel Schrag - Snowball Earth Sun abruptly cooled or Earth tilted on its axis or experienced an orbital blip that reduced solar warmth or carbon dioxide increased?  ice sheets covered continents & seas froze almost to equator, events that occurred at least twice between 800 million & 550 million years ago  Each glacial period lasted millions of years & ended under extreme greenhouse conditions. Climate shocks triggered evolution of multicellular animal life, & challenge long-held assumptions regarding the limits of global change  “Clastic Hierarchies” Christopher G. St. C. Kendall
  201. 201. Snowball Earth Rocky cliffs along Namibia's Skeleton Coast. “Clastic Hierarchies” Christopher G. St. C. Kendall
  202. 202. Snowball Earth Drop Stones “Clastic Hierarchies” Christopher G. St. C. Kendall
  203. 203. “Clastic Hierarchies” Christopher G. St. C. Kendall
  204. 204. Glacial System Characteristics Signal extremes in local climate & sea level position  Stratigraphic markers of glacial events  Source of tillite (pebbles & larger fragments supported in fine-grained matrix ) deposited from glaciers.  Massive tillite inferred deposited below ice sheets or dropping from marine supported ice in submarine setting Banded tillite may be deposited by ice sheets Laminites common in lakes (Varve), Loess dust on land  Supraglacial & pro-glacial deposits with stratified conglomerates & sandstone  U Shaped valleys & glacial striae  Mountain glaciation could be source of much downslope fluvial sediment “Clastic Hierarchies”  Christopher G. St. C. Kendall
  205. 205. Simplified Glacial Systems signals  Sediment signal a mix of: Glacial carried & dumped in moraines Water born fluvial sediment Lacustrian varves Aeolian loess  Erosion: U-shaped valleys Eroded rock surface – Grooved – Plucked – Striated “Clastic Hierarchies” Christopher G. St. C. Kendall  Base level: changes in sea level.
  206. 206. Glacial Setting Currently forms 10% of earths’s surface, Pleistocene reached 30%, but in Pre Cambrian could have reached 100% Develop where all of annual snow doesn’t melt away in warm seasons Polar regions Heavy winter snowfall e.g. Washington State High elevations e.g. even equator 85% in Antarctica 10% in Greenland “Clastic Hierarchies” Christopher G. St. C. Kendall
  207. 207. Adelie Penguins Taking a Dive “Clastic Hierarchies” Christopher G. St. C. Kendall
  208. 208. Glacial Erosion  Under glacier Abrasion & plucking Bedrock polished & striated Rock flour washes out of glacier Polishing and rounding – “Sheep Rocks” Striations- scratches & grooves on rock  Above glacier Frost wedging takes place Erosion by glaciers steepens slopes “Clastic Hierarchies” Christopher G. St. C. Kendall
  209. 209. Roche Moutone – Ice Sheet Plucking “Clastic Hierarchies” Christopher G. St. C. Kendall
  210. 210. Glacial Scarring Of Bedrock Findelen Glacier Switzerland Matterhorn In Background “Clastic Hierarchies” Christopher G. St. C. Kendall
  211. 211. Glacial Sediments  Facies of continental glacial settings Grounded Ice Facies Glaciofluvial facies Glacial lacustrine facies – Facies of proglacial lakes – Facies of periglacial lakes Cold-climate periglacial facies  Facies of marine glacial settings Proximal facies Continental Shelf facies Deepwater facies “Clastic Hierarchies” Christopher G. St. C. Kendall
  212. 212. Glacial Deposition  Till Unsorted debris in fine matrix  Erratic  Moraine- body of till Lateral Moraine Medial Moraine- where tributaries join End moraine– – Terminal Recessional Ground moraine Drumlin “Clastic Hierarchies” Christopher G. St. C. Kendall
  213. 213. “Clastic Hierarchies” Christopher G. St. C. Kendall
  214. 214. Twenty Mile Medial Moraine “Clastic Hierarchies” Christopher G. St. C. Kendall
  215. 215. Robinson Tumbling Glacier Brit. Columbia “Clastic Hierarchies” Christopher G. St. C. Kendall
  216. 216. Ground and End Moraines “Clastic Hierarchies” Christopher G. St. C. Kendall
  217. 217. Glacial Lakes Ireland “Clastic Hierarchies” Christopher G. St. C. Kendall
  218. 218. Glacial Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
  219. 219. Varves “Clastic Hierarchies” Christopher G. St. C. Kendall
  220. 220. Glaciation Subdividing Surfaces “Clastic Hierarchies” Christopher G. St. C. Kendall
  221. 221. Glacial Sediments  Facies of continental glacial settings Grounded Ice Facies Glaciofluvial facies Glacial lacustrine facies – Facies of proglacial lakes – Facies of periglacial lakes Cold-climate periglacial facies  Facies of marine glacial settings Proximal facies Continental Shelf facies Deepwater facies “Clastic Hierarchies” Christopher G. St. C. Kendall
  222. 222. Glacial Systems - Conclusions Signal extremes in local climate & sea level position  Stratigraphic markers of glacial events  Source of tillite (pebbles & larger fragments supported in fine-grained matrix ) deposited from glaciers.  Massive tillite inferred deposited below ice sheets or dropping from marine supported ice in submarine setting Banded tillite may be deposited by ice sheets Laminites common in lakes (Varve), Loess dust on land  Supraglacial & pro-glacial deposits with stratified conglomerates & sandstone  U Shaped valleys & glacial striae  Mountain glaciation could be source of much downslope fluvial sediment “Clastic Hierarchies”  Christopher G. St. C. Kendall
  223. 223. Simplified Conclusions Glacial Systems  Sediment signal a mix of: Glacial carried & dumped moraines Water born fluvial sediment Lacustrian varves Aeolian loess  Erosion: U-shaped valleys Eroded rock surface – Grooved – Plucked – Striated “Clastic Hierarchies” Christopher G. St. C. Kendall  Base level: changes in sea level.
  224. 224. AEOLIAN AND DESERTS
  225. 225. Going “Clastic Hierarchies” Christopher G. St. C. Kendall
  226. 226. Aeolian System – Desert & Coast  Distribution of Aeolian systems – Holocene & Ancient  Deserts: Transport & Depositional Sytems Wind & Fluvial Action  Deposits of Modern Deserts Dunes Interdunes Sheet Sands  Aeolian Systems  Bounding Surfaces  Ancient Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
  227. 227. Simplified Desert Systems signals  Sediment signal a mix of: Aeolian sediment – dunes and sheets Water born intermittent fluvial sediment Playas and lakes Aeolian loess  Erosion: Water table “Stokes Surfaces” marks limit Incised valleys Gravel remnants Rock pavements Ventifacts  Base level: changes in ground water level. “Clastic Hierarchies” Christopher G. St. C. Kendall
  228. 228. Desert  Region with low precipitation Usually less than 25 cm rain per year  Distribution Most related to descending air Belts at 30 degrees North & South latitude Rain shadow of mountains Great distance from oceans Tropical coasts beside cold ocean currents Polar desserts “Clastic Hierarchies” Christopher G. St. C. Kendall
  229. 229. “Clastic Hierarchies” Christopher G. St. C. Kendall
  230. 230. “Clastic Hierarchies” Christopher G. St. C. Kendall Earth's General Circulation
  231. 231. “Clastic Hierarchies” Christopher G. St. C. Kendall
  232. 232. Rain Shadow Deserts “Clastic Hierarchies” Christopher G. St. C. Kendall
  233. 233. Deserts – Dune Factories Common characteristics: Lack of through-flowing streams  Internal drainage  Local base levels  Desert thunderstorms Flash floods – Mudflows Dominated by water transportation “Clastic Hierarchies” Christopher G. St. C. Kendall
  234. 234. Deserts – Depositional Systems Dunes fed by water transported sediment  Margin rimmed by incised seasonal streams (Wadiis or Arroyo)  In turn flanked by alluvial fans and rock pavements or bajada  Intermittent drainage supplying sediment  Dunes  Playas “Clastic Hierarchies” Christopher G. St. C. Kendall
  235. 235. Bajada “Pediment” & Alluvial Fans Namibia “Clastic Hierarchies” Christopher G. St. C. Kendall
  236. 236. Alluvial fans – Death Valley “Clastic Hierarchies” Christopher G. St. C. Kendall
  237. 237. Salt Pan & Alluvial Fans – Death Valley “Clastic Hierarchies” Christopher G. St. C. Kendall
  238. 238. Sediment Source - Deserts & Coasts  Abundant sediment supply (sand, silt)  Favorable wind regimes  Grain transport in wind  Transport populations & resultant deposits i. Traction (deflation pavements) ii. Saltation (sand dunes) iii. Suspension (loess) III. Subenvironments of eolian dune systems Dominated by water transportation “Clastic Hierarchies” Christopher G. St. C. Kendall
  239. 239. Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
  240. 240. Sand Movement “Clastic Hierarchies” Christopher G. St. C. Kendall
  241. 241. Brice Canyon - Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
  242. 242. Arches National Park – Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
  243. 243. Wind Erosion and Transportation  Dust storms  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout “Clastic Hierarchies” Christopher G. St. C. Kendall
  244. 244. “Clastic Hierarchies” Christopher G. St. C. Kendall
  245. 245. Wind Action  Strong in desert because: Low humidity Great temperature ranges More effective because of lack of vegetation  Effective erosion in deserts because sediment is dry “Clastic Hierarchies” Christopher G. St. C. Kendall
  246. 246. Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
  247. 247. “Clastic Hierarchies” Christopher G. St. C. Kendall
  248. 248. “Clastic Hierarchies” Christopher G. St. C. Kendall
  249. 249. Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
  250. 250. Red Sea Dust Storm RedSeaDustStorm “Clastic Hierarchies” Christopher G. St. C. Kendall
  251. 251. North Africa - Sea Dust Storm “Clastic Hierarchies” Christopher G. St. C. Kendall
  252. 252. Wind Erosion and Transportation  Dust storms Wind-blown dust accumulates in the deep ocean floor at a rate of 0.6 x 1014 g/year. “Clastic Hierarchies” Christopher G. St. C. Kendall
  253. 253. “Clastic Hierarchies” Christopher G. St. C. Kendall
  254. 254. Loess “Clastic Hierarchies” Christopher G. St. C. Kendall
  255. 255. Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
  256. 256. Desert Pavement Formation “Clastic Hierarchies” Christopher G. St. C. Kendall
  257. 257. “Clastic Hierarchies” Christopher G. St. C. Kendall
  258. 258. Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
  259. 259. Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
  260. 260. Barchan Dunes - Jordan “Clastic Hierarchies” Christopher G. St. C. Kendall
  261. 261. Zion National Park - Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
  262. 262. “Clastic Hierarchies” Christopher G. St. C. Kendall
  263. 263. Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
  264. 264. Dune Evolution “Clastic Hierarchies” Christopher G. St. C. Kendall
  265. 265. Hierarchies exhibited by aeolian and associated sediments  Grains  Ripples  Dunes  Interdune unconfined sheets  Confined bodies of wadii channel fills  Playa unconfined sheets of heterogenous chemical, wind and water transported clastic sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
  266. 266. Mechanisms of Aeolian Transportation Rolling: 2-4 mm  Surface creep  20-25% of sand moves by grains shifted by impacting saltating grains < 2 mm  Suspension: fine sand, silt, clay  Grains 0.1 mm are most easily moved by wind; mostly > 2 m above the ground surface  “Clastic Hierarchies” Christopher G. St. C. Kendall
  267. 267. Mice Tracks & Ripples White Sands, NM “Clastic Hierarchies” Christopher G. St. C. Kendall
  268. 268. Ripples on Dune “Clastic Hierarchies” Christopher G. St. C. Kendall
  269. 269. Wind Deposition  Types of dunes Barchan Transverse dune Parabolic dune Longitudinal dune “Clastic Hierarchies” Christopher G. St. C. Kendall
  270. 270. Salt Pan – West Texas, El Capitan BARCHAN LONGITUDINAL TRANSVERSE PARABOLIC BARCHINOID STAR “Clastic Hierarchies” Christopher G. St. C. Kendall
  271. 271. Star Dunes – Namibia North Africa - Sea Dust Storm “Clastic Hierarchies” Christopher G. St. C. Kendall
  272. 272. Sahara – Barchans & Camels “Clastic Hierarchies” Christopher G. St. C. Kendall
  273. 273. Navajo Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
  274. 274. Cross-bedded Navaho Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
  275. 275. Navajo Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
  276. 276. Quaternary of UAE – Stokes Surface “Clastic Hierarchies” Christopher G. St. C. Kendall
  277. 277. Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
  278. 278. Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
  279. 279. Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
  280. 280. Some characteristics of deserts  Stream channels normally dry covered with sand & gravel Narrow canyons with vertical walls  Resistance of rocks to weathering Desert topography typically steep and angular “Clastic Hierarchies” Christopher G. St. C. Kendall
  281. 281. Aeolian Sediment - Critical Character Aeolian sediments evidenced by x-bedding with high angle (30-34 degrees)  Horizontal thin laminae common locally  Sand rounded and frosted  Quartz coated by iron oxide suggests hot arid and/or seasonally humid climate (exceptions)  Well Sorted: often unimodal but if bimodal two populations present  Silt and clay minimal  “Clastic Hierarchies” Christopher G. St. C. Kendall
  282. 282. Aeolian Sediment - Critical Character Small & large scale cross bedding, with multiple orientations within horizontal bedding  Grains in laminae well sorted, especially finer sizes, sharp differences in size between lamina  Size ranges from silt (60 mu) to coarse & (2mm)  Max size transported by wind 1 cm but rare grains over 5 mm  Larger grains (0.5 - 1.mm) often well rounded  Sands free of clay and clay drapes rare  Uncemented sands have frosted surfaces  Mica usually absent  Rules of thumb - Glennie1970 “Clastic Hierarchies” Christopher G. St. C. Kendall
  283. 283. Aeolian sediment interpretation Analyse sedimentology & internal architecture with outcrop, cores and downhole imaging  Identify & seperate single aggradational units bounded by regional deflation surfaces (deepscoured to flat surfaces)  Genetic models from cyclic recurrence in facies  Aggradation characterises near- continuous accumulation  Internal facies evolution related to differences in sediment budget & moving water table  Palaeosols provide evidence of climate change  “Clastic Hierarchies” Christopher G. St. C. Kendall
  284. 284. Conclusions - Desert Systems - Simplified  Sediment signal a mix of: Aeolian sediment – dunes and sheets Water born intermittent fluvial sediment Playas and lakes Aeolian loess  Erosion: Water table “Stokes Surfaces” marks limit Incised valleys Gravel remnants Rock pavements Ventifacts  Base level: changes in ground water level. “Clastic Hierarchies” Christopher G. St. C. Kendall
  285. 285. LAKE AND ORGANICS
  286. 286. Lakes Are Ephemeral
  287. 287. Lacustrian Systems  Critical characteristics of system?  Geomorphologic & tectonic setting  Dominant sedimentary processes  Facies Subdividing surfaces Lithology Sedimentary structures Geometries – Confined versus open Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall
  288. 288. Lake Systems – Simplified Signals  Sediment signal a mix of: Lake Center –sheets and incised & unconfined turbidite cycles Margins marked by alluvial fans & fluvial sediment Reducing setting that favors organic preservation Signal cycles in order from: – Clastics & organics – Limestone & organics – Evaporites & organics  Base level: changes in ground water level  Origin of large lakes: Continental break up Continental collision “Clastic Hierarchies” Sags on craton Christopher G. St. C. Kendall
  289. 289. Significance of Lake Systems Signal extremes in local climate & geochemistry  Stratigraphic markers (Organics trap radioactive minerals)  Major source of hydrocarbons along Atlantic Margins  Major source of oil shale & gas in western USA & Canada  Major source of  Trona (Hydrated Sodium Bicarbonate Carbonate) Borax (Hydrated Sodium Borate) Sulfohalite (Na6ClF(SO4)2) Hanksite (Sodium Potassium Sulfate Carbonate Chloride) “Clastic Hierarchies” Christopher G. St. C. Kendall
  290. 290. Lake Geomorphologic & Tectonic Setting Temporary features forming 1% of earths’s land surface, filling:-     Major rifted, & faulted (Break-up) continental terrains – E. Africa Major final fill of foreland basin – Caspian & Aral Continental sags – Victoria, Kenya, Uganda, and Eyre Glacial features including: Moraine damming and/or ice scouring – Great Lakes Ice damming   Landslides or mass movements Volcanic activity including: Lava damming Crater explosion and collapse – Crater Lake   Deflation by wind scour or damming by wind blown sand - Fayum Fluvial activity including Oxbow lakes Levee lakes, Delta & barrier island entrapment “Clastic Hierarchies” Christopher G. St. C. Kendall
  291. 291. Mix of high salinity to fresh water, organic rich to evaporiti c Initial Breakup A Salt Filled Basin May be Created “Clastic Hierarchies” Christopher G. St. C. Kendall
  292. 292. Lake Tanganyika “Clastic Hierarchies” Christopher G. St. C. Kendall
  293. 293. Lake Tanganyika “Clastic Hierarchies” Christopher G. St. C. Kendall
  294. 294. Lake Tanganyika Lake levels have varied historical and earlier  Fossil and living stromatolites abundant around the margins of Lake Tanganyika, Africa provides a source of paleolimnologic and paleoclimatic information for the late Holocene  late Holocene carbonates suggests that the surface elevation of the lake has remained near the outlet level, with only occasional periods of closure  In past the lake draw down encouraged evaporites  “Clastic Hierarchies” Christopher G. St. C. Kendall
  295. 295. “Clastic Hierarchies” Christopher G. St. C. Kendall
  296. 296. “Clastic Hierarchies” Christopher G. St. C. Kendall
  297. 297. Lakes formed between splitting continents “Clastic Hierarchies” Christopher G. St. C. Kendall
  298. 298. I so la t Be lt o ed lin d r a f i n te e a r ina rio ge r Restricted Entrances To Sea Organic Rich Lake Fill Regional Drainage Away From Margin Arid Tropics Air System “Clastic Hierarchies” Wide Envelope of St. C. Kendall Christopher G. surrounding continents
  299. 299. “Clastic Hierarchies” Christopher G. St. C. Kendall
  300. 300. Lakes flanking Major Mountain Chains “Clastic Hierarchies” Christopher G. St. C. Kendall
  301. 301. Caspian and the Arral Sea  Bodies of fresh to saline water trapped on craton behind major mountain chains  Tend to act as traps to clastics, carbonates and evaporitic sediments  Climatic change is recorded in the record of the sediment fill  Water draw down encourages evaporites “Clastic Hierarchies” Christopher G. St. C. Kendall
  302. 302. Caspian “Clastic Hierarchies” Christopher G. St. C. Kendall
  303. 303. Aral Sea “Clastic Hierarchies” Christopher G. St. C. Kendall
  304. 304. Great Lakes “Clastic Hierarchies” Christopher G. St. C. Kendall
  305. 305. Great Lakes  Bodies of fresh water trapped on glacially scoured depressions on craton behind glacial moraines  Act as traps to clastic sediments  Climatic change is recorded in record of sediment fill  Water draw down encourages precipitates “Clastic Hierarchies” Christopher G. St. C. Kendall
  306. 306. Switzerland “Clastic Hierarchies” Christopher G. St. C. Kendall
  307. 307. “Clastic Hierarchies” Christopher G. St. C. Kendall
  308. 308. Ice Dammed Lake – Alaska “Clastic Hierarchies” Christopher G. St. C. Kendall
  309. 309. Lake Response to Stratification “Clastic Hierarchies” Christopher G. St. C. Kendall
  310. 310. Lake Sedimentary facies  Sedimentary signal like that of a foreshortened Marine setting  Narrow shores with beaches and deltas  Finer sediments and turbidites fill the lake center “Clastic Hierarchies” Christopher G. St. C. Kendall
  311. 311. Lake Sedimentary facies        Presence of freshwater fossils Lake sediments commonly better sorted than fluvial and periglacial sediments May (or may not) display a tendency toward fining upward and inward towards the basin center Lake sediments are predominantly fine grained sediments either siliciclastic muds but may be carbonate sediments and evaporates Typical sequence may produced as the lake dries up with a coarsening upward sequence from laminated shales, marls and limestones to rippled and cross-bedded sandstone and possibly conglomerates Lake sediment fill often shows cyclic alternation of laminae Varves produced by seasonal variations in sediment supply and lake circulation which changes the chemistry of the lakes “Clastic Hierarchies” Christopher G. St. C. Kendall
  312. 312. Lacustrian sedimentary geometries  Shore marked by linear beaches  Coarse to fine slope  Deeper water lake laminae and turbidites  Eclectic clastic and evaporitic sedments “Clastic Hierarchies” Christopher G. St. C. Kendall
  313. 313. Green River Lake “Clastic Hierarchies” Christopher G. St. C. Kendall
  314. 314. Green River Lake Fill “Clastic Hierarchies” Christopher G. St. C. Kendall
  315. 315. Green River – Systems & Facies “Clastic Hierarchies” Christopher G. St. C. Kendall
  316. 316. Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
  317. 317. Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
  318. 318. Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
  319. 319. Green River Fauna & Flora “Clastic Hierarchies” Christopher G. St. C. Kendall
  320. 320. East African Lake Margin “Clastic Hierarchies” Christopher G. St. C. Kendall
  321. 321. “Clastic Hierarchies” Christopher G. St. C. Kendall
  322. 322. Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
  323. 323. Conclusions - Lake Systems  Sediment signal a mix of: Lake Center –sheets and incised & unconfined turbidite cycles Margins marked by alluvial fans & fluvial sediment Reducing setting that favors organic preservation Signal cycles in order from: – Clastics & organics – Limestone & organics – Evaporites & organics  Base level: changes in ground water level  Origin of large lakes: Continental break up Continental collision “Clastic Hierarchies” Sags on craton Christopher G. St. C. Kendall
  324. 324. Lakes Are Ephemeral
  325. 325. End of the Lecture Lets go for lunch!!!
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×