• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Clastic depositional system
 

Clastic depositional system

on

  • 499 views

 

Statistics

Views

Total Views
499
Views on SlideShare
499
Embed Views
0

Actions

Likes
0
Downloads
31
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Clastic depositional system Clastic depositional system Presentation Transcript

    • Clastic Hierarchies and Eustasy Spring 2005 Professor Christopher G. St. C. Kendall kendall@sc.edu 777.2410 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Clastic Depositional Systems Their Response to Base Level Change Based, in part, on classroom lectures by David Barbeau & Chris Kendall
    • Lecture Series Overview Sequence stratigraphy & stratigraphic surfaces  Basics: Ideal ‘sequence’ of Vail et al 1977 & associated terminology  Clastic system response to changing sea level and rates of sedimentation - with movie  Carbonate systems response to changing sea level and rates of sedimentation - with movie  Exercises – Sequence stratigraphy of carbonates and clastics from chronostratigraphy, seismic, outcrop and well log character  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Sedimentary rocks are the product of the generation, transport, deposition, and diagenesis of detritus and solutes derived from pre-existing rocks.
    • Sedimentary rocks are the product of the creation, transport, deposition, and diagenesis of detritus and solutes derived from pre-existing rocks.
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Depositional Systems  depositional system: assemblage of multiple process-related sedimentary facies assemblages, commonly identified by the geography in which deposition occurs. EX: nearshore depositional system, deep marine depositional system, glacial depositional system, fluvial depositional system  NB depositional systems are: modern features used to interpret ancient sedimentary successions “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Clastic Depositional Systems Terr estr ial Tran sitio n al “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
    • Clastic Depositional Systems Terr estr ial Tran sitio na l “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
    • Clastic Depositional Systems Terr estr ial Tran sitio na l “Clastic Hierarchies” Christopher G. St. C. Kendall Mari ne
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Clastic System  Critical stratigraphic signals of system?  Geomorphologic & tectonic setting  Dominant sedimentary processes  Facies Subdividing surfaces Lithology Sedimentary structures Geometries – Confined versus open Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Types of Depositional Systems marine  ocean, sea terrestrial  land transitional  part land, part ocean “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Marine Depositional Systems  shallow/nearshore tide-dominated wave-dominated reef  shelf/platform carbonate clastic  deep marine deep sea fans pelagic “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Depositional Systems Form proximal to shorelines  Geographically narrow, geologically important  Fluid flow transport and deposition  Surface waves Tidal waves (not tsunami!) Fluvial input Grain-size decreases with deeper water  Onshore, offshore & longshore sediment transport important  Net sediment input (often from rivers) often leads to progradational geometries  Important for tracking sea-level changes  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coast Types Dalrymple et al, 1992 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall Dalrymple et al, 1992
    • Tidal Range and Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall Hayes, 1979
    • Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Waves & Wave Periods “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Beach Systems     Sediments coarsen upward from marine shales Linear sand bodies parallel to basin margin, serrated margins landward Formed by a mix of waves and tidal currents Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Wells sorted and rounded pure quartz arenites common Sedimentary structures – – – Offshore hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Vertical stacking of shore line sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Beach Face - South Carolina Foreshore Note High Energy Planar Beds Photo: G. Voulgaris “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Trough Cross-bed Current Ripples Ordovician – Near Winchester Kentucky “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Offshore Coastal Profile - Hummocky “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Profile “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Geomorphology of Coast “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Profile and Lithofacies “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Lithofacies & Architecture “Clastic Hierarchies” Christopher G. St. C. Kendall Aigner & Reineck, 1982
    • Coastal Lithofacies “Clastic Hierarchies” Christopher G. St. C. Kendall Reineck & Singh, 1980
    • Coastal Lithofacies Walker, 1984 Progradation Transgression “Clastic Hierarchies” Christopher G. St. C. Kendall Inlet
    • Hayes, 1979 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Tide Versus Wave Domination Hubbard et al., 1979 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coastal Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wave Dominated - Texan Coast Note Storm Washover Serrated Back Barrier “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wave Dominated - Texan Coast r ve r o sh rrie Wa Ba orm ack St d B o te a te N rr “Clastic Hierarchies” Se Christopher G. St. C. Kendall
    • Wave Dominated - Texan Coast r ve r o sh rrie Wa Ba orm ack St d B o te a te N rr Se “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wave Dominated - Texan Coast Note Storm Washover Serrated Back Barrier “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Note Storm Washover On a Back Barrier Pennsylvanian Wave Dominated Coast
    • Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Chenier Coast – Gulf of Carpentaria Note Channels Reworking Chenier Plain “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Note Channels Reworking Barrier Islands
    • Delta Mouth Bar - Kentucky Note Incised Surface Of Reworked Bar “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Tidal, Storm or Tsunami Channel Note Incised Surface Beneath Channel “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Sequence Boundary (SB) from well logs, core & outcrop Defined by erosion or incision of underlying flooding surfaces (mfs and TS)  Inferred from interruption in the lateral continuity of these surfaces  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Sequence Boundary (SB) from well logs, core & outcrop Defined by erosion or incision of underlying flooding surfaces (mfs and TS)  Inferred from interruption in the lateral continuity of these surfaces  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Beach Ridges: St. Phillips Island, SC “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Progradation & Transgressive Architectures “Clastic Hierarchies” Christopher G. St. C. Kendall Kraft & John, 1979
    • Sea-Level Changes “Clastic Hierarchies” Christopher G. St. C. Kendall Reading, 1986
    • Tidal Bundles “Clastic Hierarchies” Christopher G. St. C. Kendall Visser, 1980
    • x ix atri atr dm dm mu mu 0 0 0 /5 0 /5 d5 d5 Mu Mu es tes nat iina om om r ed r ed dp dp San San d n d iin San San d& d& San San Bedforms Current Ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Asymmetric Current Ripples Upper Mississippian – Pennington Formation Pound Gap “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Base Level Change on Coast “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Tidal Geomorphology Kraft et al, 1987 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Transitional Depositional Systems  Estuaries  Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Estuary Systems     Sediments coarsen upward from marine shales Sand bodies perpendicular to basin margin, narrow landward Formed by a mix of tidal currents and occasional storm waves Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Wells sorted and rounded pure quartz arenites common Sedimentary structures – – – Offshore hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets perpendicular and occasionally parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Estuarine Lithofacies Horne et al, 1978 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Marine Depositional Systems  Wave-dominated coasts  Tide-dominated coasts  Fluvial-dominated coasts (deltas)  Carbonate reefs  Clastic shelves & platforms  Carbonate shelves & platforms  Deepwater fans  Pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deltaic Depositional Systems Form where rivers with large drainages meet standing water bodies (~basins)  Very large sediment flux  Fluid & gravity flow transport and deposition  Surface waves Tidal waves (not tsunami!) Fluvial input Turbidity currents & sub-aqueous debris flows Net sediment input often leads to progradational geometries  Delta types depend on tidal range, wave climate, and composition and depths of water in river and basin  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Deltaic Systems     Sediments coarsen upward from marine shales Sand bodies form tongues perpendicular to basin margin Formed by a mix of fluvial input, tidal currents and storm waves Facies Subdivided erosion surfaces formed during – Dropping in base level  Local channels – Rising in base level Poorly sorted and irregular litharenites common Sedimentary structures – – – Offshore laminated to hummocky wavy bedding Nearshore cut and fill Gently seaward dipping thin parallel beds Geometries – Confined incised channels – Open linear sheets perpendicular and occasionally parallel to shore Fauna & flora – Marine fauna at base of units – Terrestrial flora at crest of units “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coast Types Dalrymple et al, 1992 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coast Types “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lena River Delta - Russia “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Shatt al Arab Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Atachafalya Delta - USA “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Amazon Delta - Brazil “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Nile Delta - Egypt “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Types  River-dominated Small tidal range, weak storms and large sediment flux build delta out into basin  Tide-dominated Large tidal ranges dominate transport, deposition & geomorphology  Wave-dominated Strong and repeated storms rework delta sediment “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Processes  Depositional patterns and geomorphology depend on the relative dominance of three competing processes at river mouths: Inertia – River water – Basin water Friction – Water vs. substrate – Water vs. water Buoyancy “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Processes Relative influence of inertia, friction & buoyancy is a function of:  Density contrasts Homopycnal flow – equal density water bodies mix Hyperpycnal flow – higher density sinks below ocean (Yellow) Hypopycnal flow – lower density floats on ocean (Mississippi)  Concentration, grain size and suspended vs. bedload ratio Water depths Mouth Basin  Water discharge  Water inflow velocity “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Processes  Inertia-dominated deltas deep water, steep slopes, high river flow velocity moderate sediment transport, large flow expansion  Friction-dominated deltas shallow water, low slopes, proximal sediment transport, large bars, limited flow expansion hyperpycnal flow possible  Buoyancy-dominated deltas deep water, hypopycnal flow, large suspended load distant sediment transport, flow rafting  plumes “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • River-Dominated Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lobe-Switching “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Inter-distributary bays “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Mahakam River-Dominated Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wave-dominated Grijalva Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Bramaputra Delta - India “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Tide-Dominated Niger Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Tide-Dominated Niger Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Successions “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wave-Dominated Delta Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Collapse “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delta Collapse “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Fan-Deltas “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deltaic Succession “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Types of Depositional Systems marine  ocean, sea terrestrial  land transitional  part land, part ocean “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Marine Depositional Systems  wave-dominated coasts  tide-dominated coasts  fluvial-dominated coasts (deltas)  carbonate reefs  clastic shelves & platforms  carbonate shelves & platforms  deepwater fans  pelagic abyssal plains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deep Sea Depositional Systems “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deep Sea Depositional Systems “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Characteristics of Deepwater Systems     Sediments fine upward from marine fans Sand bodies form lobes perpendicular to basin margin Formed by a mix of fluvial input, and turbidite currents Facies Subdivided erosion surfaces formed during – Migrating fan lobe fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenites common Sedimentary structures – Fining upward cycles that coarsen up as depo-center of lobes migrate – Up dip channel cut and fill – Gently seaward dipping thin parallel lobate sheets Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to shore Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Restricted Marine fauna often in over bank shales
    • Deep Sea Fan Depositional Systems Form in the moderate to deep ocean, down-dip of submarine canyons and often deltas  Large sediment flux, high sedimentation rate, large area  Gravity flow transport and deposition  turbidity currents subaqueous debris flows suspension fall-out Lobes and lobe-switching important  Both coarse and fine grained sediment  Often well-sorted and normally graded  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Bengal Fan & Ganges-Brahmaputra Delta “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Canyons and Deep Sea Fans “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Canyons “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Canyons and Deep Sea Fans “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Fan Morphology “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Fan Types “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Turbidity Currents  Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Gravity Flows: Turbidity Currents “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Turbidity Currents & Hemipelagic Sediment “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deep Water Fan Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deep Water Fan Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coarse-grained Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Coarse-grained Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Proximal Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Distal Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Soft-Sediment Deformation “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Submarine Channels “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Delaware Mountains – Basin Fans Deepwater Channel Cha n nel S a n ds “Clastic Hierarchies” Christopher G. St. C. Kendall Kendall Photo
    • Brushy Canyon Group - Base of Slope Permian Basin Channel Fill Turbidites “Clastic Hierarchies” Christopher G. St. C. Kendall Kendall Photo
    • Brushy Canyon Group - Base of Slope Permian Basin Margin of submarine fan channel incised into "overbank". Channel fill with amalgamation as well as flowage & injection of sand into the surrounding strata of the channel walls. Kendall Photo “Clastic Hierarchies” Christopher G. St. C. Kendall U.S. Highway 62-180 south of Guadalupe Pass
    • Pelagic Depositional Systems Form in the open ocean or open (large) lakes and seas  Small sediment flux, very low sedimentation rate  Suspended load current transport  Surface waves Tidal waves (not tsunami!) Fluvial input Turbidity currents & sub-aqueous debris flows Suspension fall-out deposition  Fine-grained (clay, mud and silt) deposition  Carbonates Siliciclastic mudstones “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Pelagic Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deep Marine Sedimentation “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Pelagic Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Calcareous Microfossils “Clastic Hierarchies” Christopher G. St. C. Kendall
    • CCD “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Abyssal Plains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Siliceous Microfossils “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Siliceous Microfossils  Chert “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Siliceous Microfossils  Chert “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian Dust “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Dropstones “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Types of Depositional Systems marine  ocean, sea transitional  part land, part ocean terrestrial  land “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial Fan System Characteristics     Sediments fine upward within fan lobes Sand bodies form lobes perpendicular to basin margin Formed by a mix of fluvial input, and mass sediment movement Facies Subdivided erosion surfaces formed during – Migrating fan lobe fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenite boulders, gravels and sands common Sedimentary structures – Fining upward cycles that coarsen up as depo-center of lobes progrdes – Up dip channel cut and fill – Gently seaward dipping thin parallel lobate sheets Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to Mt front Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Terrestrial flora can be common in over bank lobes
    • Alluvial Fan Depositional Systems Form upon exit of drainage basin from a mountain front  Mix of sediment gravity flow & fluid flow depositional processes  Debris flows Hyperconcentrated flows Fluvial channels Sheetfloods Lobe-switching processes produce cone  Radial sediment dispersal  Decreasing grain size downslope  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • exit gorge active lobes “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Drainage & Depositional Basins “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial Fan Architecture Spearing, 1974 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial Fans Blair & McPherson. 1994 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial Fan Architecture Kelly & Olson, 1993 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial and Fluvial Fans  ‘Stream-dominated’ Alluvial Fans D = ~10 Km; S = 5-15º  ‘Gravity-flow’ Alluvial Fans D = ~10 Km; S = 5-15º  Talus Cones D < 1 Km; S = 10-30º  Fluvial Megafans D = 50 -100s Km; S < 1º “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial Fan Stratigraphy Nemec & Steel, 1984 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Stream-dominated AF Stratigraphy Boothroyd, 1972 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Gravity-Flow AF Stratigraphy “Clastic Hierarchies” Christopher G. St. C. Kendall Blair, 1987
    • Alluvial Fan Architecture Gloppen “Clastic Hierarchies” & Steel, 1980 Christopher G. St. C. Kendall
    • Terrestrial Depositional Systems Alluvial Fan  Fluvial  Glacial  Eolian  Lacustrine  Playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Fluvial System Characteristics     Sediments fine upward within channel fill Sand bodies fine distally from channels Formed by a mix of fluvial bedload, and fine suspended sediment Facies Subdivided erosion surfaces formed during – Migrating channel fill – Dropping in base level  Local channels – Rising in base level Poor to well sorted litharenite gravels, sands and shales common Sedimentary structures – Fining upward cycles that fill channels – Up dip channel cut and fill – Gently dipping thin parallel lobate sheets perpendicular to channels Geometries – Confined incised channels – Open lobate sheets perpendicular and occasionally parallel to channels Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall – Terrestrial flora can be common in over bank sediments
    • Fluvial Depositional Systems Dominant conduit from regions of sediment production (mountains) to sediment storage (oceans, basins)  Characterized by channel pattern  Meandering Braided Anastomozing  Characterized by sediment load Bedload Suspended load Mixed load  Unidirectional sediment dispersal “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Fluvial Channel Patterns “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Fluvial Channel Patterns Schumm & Khan, 1972 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Meandering Streams “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Meandering Fluvial System Allen, 1964 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Thalwegs “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Avulsion Cross et al., 1989 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Meandering Fluvial Architecture “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Braided Fluvial Architecture “Clastic Hierarchies” Nemec, 1992 Christopher G. St. C. Kendall
    • Fluvial Channels Hirst, 1991 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Maturity “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Fluvial Characterization “Clastic Hierarchies” Christopher G. St. C. Kendall Schumm, 1981
    • Fluvial Channel Patterns “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Orton & Reading, 1993
    • Terrestrial Depositional Systems fluvial  alluvial fan  glacial  eolian  lacustrine  playa  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • GLACIERS AND GLACIATION
    • Past Glacial Periods  Pre-Cambrian at end of Neoproterozoic eon End of the Ordovician  Late Carboniferous (Pennsylvanian] through Permian  Pleistocene  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Periods “Clastic Hierarchies” Christopher G. St. C. Kendall
    • The Snowball Earth During last ice age max, 21,000 years ago, North America & Europe covered by glaciers over 2 kilometers thick, sea level dropped 120 meters. Global chill : land & sea ice covered 30 %t of Earth, more than at other times in last 500 million years  Near end of Neoproterozoic eon (1000-543 million years ago), glaciation immediately preceded first appearance of recognizable animal life some 600 million years ago  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Paul Hoffman & Daniel Schrag - Snowball Earth Sun abruptly cooled or Earth tilted on its axis or experienced an orbital blip that reduced solar warmth or carbon dioxide increased?  ice sheets covered continents & seas froze almost to equator, events that occurred at least twice between 800 million & 550 million years ago  Each glacial period lasted millions of years & ended under extreme greenhouse conditions. Climate shocks triggered evolution of multicellular animal life, & challenge long-held assumptions regarding the limits of global change  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Snowball Earth Rocky cliffs along Namibia's Skeleton Coast. “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Snowball Earth Drop Stones “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial System Characteristics Signal extremes in local climate & sea level position  Stratigraphic markers of glacial events  Source of tillite (pebbles & larger fragments supported in fine-grained matrix ) deposited from glaciers.  Massive tillite inferred deposited below ice sheets or dropping from marine supported ice in submarine setting Banded tillite may be deposited by ice sheets Laminites common in lakes (Varve), Loess dust on land  Supraglacial & pro-glacial deposits with stratified conglomerates & sandstone  U Shaped valleys & glacial striae  Mountain glaciation could be source of much downslope fluvial sediment “Clastic Hierarchies”  Christopher G. St. C. Kendall
    • Simplified Glacial Systems signals  Sediment signal a mix of: Glacial carried & dumped in moraines Water born fluvial sediment Lacustrian varves Aeolian loess  Erosion: U-shaped valleys Eroded rock surface – Grooved – Plucked – Striated “Clastic Hierarchies” Christopher G. St. C. Kendall  Base level: changes in sea level.
    • Glacial Setting Currently forms 10% of earths’s surface, Pleistocene reached 30%, but in Pre Cambrian could have reached 100% Develop where all of annual snow doesn’t melt away in warm seasons Polar regions Heavy winter snowfall e.g. Washington State High elevations e.g. even equator 85% in Antarctica 10% in Greenland “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Adelie Penguins Taking a Dive “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Erosion  Under glacier Abrasion & plucking Bedrock polished & striated Rock flour washes out of glacier Polishing and rounding – “Sheep Rocks” Striations- scratches & grooves on rock  Above glacier Frost wedging takes place Erosion by glaciers steepens slopes “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Roche Moutone – Ice Sheet Plucking “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Scarring Of Bedrock Findelen Glacier Switzerland Matterhorn In Background “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Sediments  Facies of continental glacial settings Grounded Ice Facies Glaciofluvial facies Glacial lacustrine facies – Facies of proglacial lakes – Facies of periglacial lakes Cold-climate periglacial facies  Facies of marine glacial settings Proximal facies Continental Shelf facies Deepwater facies “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Deposition  Till Unsorted debris in fine matrix  Erratic  Moraine- body of till Lateral Moraine Medial Moraine- where tributaries join End moraine– – Terminal Recessional Ground moraine Drumlin “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Twenty Mile Medial Moraine “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Robinson Tumbling Glacier Brit. Columbia “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Ground and End Moraines “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Lakes Ireland “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Varves “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glaciation Subdividing Surfaces “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Sediments  Facies of continental glacial settings Grounded Ice Facies Glaciofluvial facies Glacial lacustrine facies – Facies of proglacial lakes – Facies of periglacial lakes Cold-climate periglacial facies  Facies of marine glacial settings Proximal facies Continental Shelf facies Deepwater facies “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Glacial Systems - Conclusions Signal extremes in local climate & sea level position  Stratigraphic markers of glacial events  Source of tillite (pebbles & larger fragments supported in fine-grained matrix ) deposited from glaciers.  Massive tillite inferred deposited below ice sheets or dropping from marine supported ice in submarine setting Banded tillite may be deposited by ice sheets Laminites common in lakes (Varve), Loess dust on land  Supraglacial & pro-glacial deposits with stratified conglomerates & sandstone  U Shaped valleys & glacial striae  Mountain glaciation could be source of much downslope fluvial sediment “Clastic Hierarchies”  Christopher G. St. C. Kendall
    • Simplified Conclusions Glacial Systems  Sediment signal a mix of: Glacial carried & dumped moraines Water born fluvial sediment Lacustrian varves Aeolian loess  Erosion: U-shaped valleys Eroded rock surface – Grooved – Plucked – Striated “Clastic Hierarchies” Christopher G. St. C. Kendall  Base level: changes in sea level.
    • AEOLIAN AND DESERTS
    • Going “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian System – Desert & Coast  Distribution of Aeolian systems – Holocene & Ancient  Deserts: Transport & Depositional Sytems Wind & Fluvial Action  Deposits of Modern Deserts Dunes Interdunes Sheet Sands  Aeolian Systems  Bounding Surfaces  Ancient Deposits “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Simplified Desert Systems signals  Sediment signal a mix of: Aeolian sediment – dunes and sheets Water born intermittent fluvial sediment Playas and lakes Aeolian loess  Erosion: Water table “Stokes Surfaces” marks limit Incised valleys Gravel remnants Rock pavements Ventifacts  Base level: changes in ground water level. “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Desert  Region with low precipitation Usually less than 25 cm rain per year  Distribution Most related to descending air Belts at 30 degrees North & South latitude Rain shadow of mountains Great distance from oceans Tropical coasts beside cold ocean currents Polar desserts “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall Earth's General Circulation
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Rain Shadow Deserts “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deserts – Dune Factories Common characteristics: Lack of through-flowing streams  Internal drainage  Local base levels  Desert thunderstorms Flash floods – Mudflows Dominated by water transportation “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Deserts – Depositional Systems Dunes fed by water transported sediment  Margin rimmed by incised seasonal streams (Wadiis or Arroyo)  In turn flanked by alluvial fans and rock pavements or bajada  Intermittent drainage supplying sediment  Dunes  Playas “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Bajada “Pediment” & Alluvial Fans Namibia “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Alluvial fans – Death Valley “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Salt Pan & Alluvial Fans – Death Valley “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Sediment Source - Deserts & Coasts  Abundant sediment supply (sand, silt)  Favorable wind regimes  Grain transport in wind  Transport populations & resultant deposits i. Traction (deflation pavements) ii. Saltation (sand dunes) iii. Suspension (loess) III. Subenvironments of eolian dune systems Dominated by water transportation “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Sand Movement “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Brice Canyon - Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Arches National Park – Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Erosion and Transportation  Dust storms  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Action  Strong in desert because: Low humidity Great temperature ranges More effective because of lack of vegetation  Effective erosion in deserts because sediment is dry “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Erosion and Transportation  Sand Moves along ground- saltation Sandstorms Sandblasting up to 1 meter – Ventifact  Deflation Blowout  Dust storms “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Red Sea Dust Storm RedSeaDustStorm “Clastic Hierarchies” Christopher G. St. C. Kendall
    • North Africa - Sea Dust Storm “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Erosion and Transportation  Dust storms Wind-blown dust accumulates in the deep ocean floor at a rate of 0.6 x 1014 g/year. “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Loess “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Desert Pavement Formation “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Barchan Dunes - Jordan “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Zion National Park - Utah “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Deposition  Loess  Gravel Pavements Desert varnish & “petroglyphs”  Sand Dunes Well-sorted, well-rounded sand grains Slip face – Angle of repose Wind ripples “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Dune Evolution “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Hierarchies exhibited by aeolian and associated sediments  Grains  Ripples  Dunes  Interdune unconfined sheets  Confined bodies of wadii channel fills  Playa unconfined sheets of heterogenous chemical, wind and water transported clastic sediments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Mechanisms of Aeolian Transportation Rolling: 2-4 mm  Surface creep  20-25% of sand moves by grains shifted by impacting saltating grains < 2 mm  Suspension: fine sand, silt, clay  Grains 0.1 mm are most easily moved by wind; mostly > 2 m above the ground surface  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Mice Tracks & Ripples White Sands, NM “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Ripples on Dune “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Wind Deposition  Types of dunes Barchan Transverse dune Parabolic dune Longitudinal dune “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Salt Pan – West Texas, El Capitan BARCHAN LONGITUDINAL TRANSVERSE PARABOLIC BARCHINOID STAR “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Star Dunes – Namibia North Africa - Sea Dust Storm “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Sahara – Barchans & Camels “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Navajo Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Cross-bedded Navaho Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Navajo Sandstone “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Quaternary of UAE – Stokes Surface “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Navajo Sandstone Base level change punctuates the sandstone with erosion surfaces! “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Some characteristics of deserts  Stream channels normally dry covered with sand & gravel Narrow canyons with vertical walls  Resistance of rocks to weathering Desert topography typically steep and angular “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian Sediment - Critical Character Aeolian sediments evidenced by x-bedding with high angle (30-34 degrees)  Horizontal thin laminae common locally  Sand rounded and frosted  Quartz coated by iron oxide suggests hot arid and/or seasonally humid climate (exceptions)  Well Sorted: often unimodal but if bimodal two populations present  Silt and clay minimal  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian Sediment - Critical Character Small & large scale cross bedding, with multiple orientations within horizontal bedding  Grains in laminae well sorted, especially finer sizes, sharp differences in size between lamina  Size ranges from silt (60 mu) to coarse & (2mm)  Max size transported by wind 1 cm but rare grains over 5 mm  Larger grains (0.5 - 1.mm) often well rounded  Sands free of clay and clay drapes rare  Uncemented sands have frosted surfaces  Mica usually absent  Rules of thumb - Glennie1970 “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aeolian sediment interpretation Analyse sedimentology & internal architecture with outcrop, cores and downhole imaging  Identify & seperate single aggradational units bounded by regional deflation surfaces (deepscoured to flat surfaces)  Genetic models from cyclic recurrence in facies  Aggradation characterises near- continuous accumulation  Internal facies evolution related to differences in sediment budget & moving water table  Palaeosols provide evidence of climate change  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Conclusions - Desert Systems - Simplified  Sediment signal a mix of: Aeolian sediment – dunes and sheets Water born intermittent fluvial sediment Playas and lakes Aeolian loess  Erosion: Water table “Stokes Surfaces” marks limit Incised valleys Gravel remnants Rock pavements Ventifacts  Base level: changes in ground water level. “Clastic Hierarchies” Christopher G. St. C. Kendall
    • LAKE AND ORGANICS
    • Lakes Are Ephemeral
    • Lacustrian Systems  Critical characteristics of system?  Geomorphologic & tectonic setting  Dominant sedimentary processes  Facies Subdividing surfaces Lithology Sedimentary structures Geometries – Confined versus open Fauna & flora “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Systems – Simplified Signals  Sediment signal a mix of: Lake Center –sheets and incised & unconfined turbidite cycles Margins marked by alluvial fans & fluvial sediment Reducing setting that favors organic preservation Signal cycles in order from: – Clastics & organics – Limestone & organics – Evaporites & organics  Base level: changes in ground water level  Origin of large lakes: Continental break up Continental collision “Clastic Hierarchies” Sags on craton Christopher G. St. C. Kendall
    • Significance of Lake Systems Signal extremes in local climate & geochemistry  Stratigraphic markers (Organics trap radioactive minerals)  Major source of hydrocarbons along Atlantic Margins  Major source of oil shale & gas in western USA & Canada  Major source of  Trona (Hydrated Sodium Bicarbonate Carbonate) Borax (Hydrated Sodium Borate) Sulfohalite (Na6ClF(SO4)2) Hanksite (Sodium Potassium Sulfate Carbonate Chloride) “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Geomorphologic & Tectonic Setting Temporary features forming 1% of earths’s land surface, filling:-     Major rifted, & faulted (Break-up) continental terrains – E. Africa Major final fill of foreland basin – Caspian & Aral Continental sags – Victoria, Kenya, Uganda, and Eyre Glacial features including: Moraine damming and/or ice scouring – Great Lakes Ice damming   Landslides or mass movements Volcanic activity including: Lava damming Crater explosion and collapse – Crater Lake   Deflation by wind scour or damming by wind blown sand - Fayum Fluvial activity including Oxbow lakes Levee lakes, Delta & barrier island entrapment “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Mix of high salinity to fresh water, organic rich to evaporiti c Initial Breakup A Salt Filled Basin May be Created “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Tanganyika “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Tanganyika “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Tanganyika Lake levels have varied historical and earlier  Fossil and living stromatolites abundant around the margins of Lake Tanganyika, Africa provides a source of paleolimnologic and paleoclimatic information for the late Holocene  late Holocene carbonates suggests that the surface elevation of the lake has remained near the outlet level, with only occasional periods of closure  In past the lake draw down encouraged evaporites  “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lakes formed between splitting continents “Clastic Hierarchies” Christopher G. St. C. Kendall
    • I so la t Be lt o ed lin d r a f i n te e a r ina rio ge r Restricted Entrances To Sea Organic Rich Lake Fill Regional Drainage Away From Margin Arid Tropics Air System “Clastic Hierarchies” Wide Envelope of St. C. Kendall Christopher G. surrounding continents
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lakes flanking Major Mountain Chains “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Caspian and the Arral Sea  Bodies of fresh to saline water trapped on craton behind major mountain chains  Tend to act as traps to clastics, carbonates and evaporitic sediments  Climatic change is recorded in the record of the sediment fill  Water draw down encourages evaporites “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Caspian “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Aral Sea “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Great Lakes “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Great Lakes  Bodies of fresh water trapped on glacially scoured depressions on craton behind glacial moraines  Act as traps to clastic sediments  Climatic change is recorded in record of sediment fill  Water draw down encourages precipitates “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Switzerland “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Ice Dammed Lake – Alaska “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Response to Stratification “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Sedimentary facies  Sedimentary signal like that of a foreshortened Marine setting  Narrow shores with beaches and deltas  Finer sediments and turbidites fill the lake center “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lake Sedimentary facies        Presence of freshwater fossils Lake sediments commonly better sorted than fluvial and periglacial sediments May (or may not) display a tendency toward fining upward and inward towards the basin center Lake sediments are predominantly fine grained sediments either siliciclastic muds but may be carbonate sediments and evaporates Typical sequence may produced as the lake dries up with a coarsening upward sequence from laminated shales, marls and limestones to rippled and cross-bedded sandstone and possibly conglomerates Lake sediment fill often shows cyclic alternation of laminae Varves produced by seasonal variations in sediment supply and lake circulation which changes the chemistry of the lakes “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Lacustrian sedimentary geometries  Shore marked by linear beaches  Coarse to fine slope  Deeper water lake laminae and turbidites  Eclectic clastic and evaporitic sedments “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Lake “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Lake Fill “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River – Systems & Facies “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Fauna & Flora “Clastic Hierarchies” Christopher G. St. C. Kendall
    • East African Lake Margin “Clastic Hierarchies” Christopher G. St. C. Kendall
    • “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Green River Section “Clastic Hierarchies” Christopher G. St. C. Kendall
    • Conclusions - Lake Systems  Sediment signal a mix of: Lake Center –sheets and incised & unconfined turbidite cycles Margins marked by alluvial fans & fluvial sediment Reducing setting that favors organic preservation Signal cycles in order from: – Clastics & organics – Limestone & organics – Evaporites & organics  Base level: changes in ground water level  Origin of large lakes: Continental break up Continental collision “Clastic Hierarchies” Sags on craton Christopher G. St. C. Kendall
    • Lakes Are Ephemeral
    • End of the Lecture Lets go for lunch!!!