• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Topic 6
 

Topic 6

on

  • 865 views

 

Statistics

Views

Total Views
865
Views on SlideShare
865
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Topic 6 Topic 6 Document Transcript

    • Topic 6: Human health and physiology 16.1- Digestion: Ingestion- you eat the food Digestion- a series of chemical reactions, whereby you convert the ingested food to smaller and smaller molecular forms Absorption- small molecular forms are absorbed through cells of your digestive system and pass into nearby blood or lymphatic vessels Transport- your circulatory system delivers the small molecular nutrients to your body cells Many of the foods we ingest have very large molecules, too large to pass across the cell membrane. But in order for the food to get into your bloodstream, molecules must pass through the cell membrane of your intestines and then through the cell membrane of a capillary. Therefore any food we intake must be chemically digested into a suitable size. Plant cells characteristically store excess carbohydrates in the form of starch, whereas animals store excess carbohydrates as glycogen. Each type of living organism has its own unique set of proteins. The role of enzymes during digestion: Enzymes are biological catalysts- globular proteins that increase the rate of a reaction by lowering activation energy. Digestive enzymes are released into the gut from glands and are used in catabolic reactions- they break down larger molecules. By lowering the activation energy of the reaction, the reaction does not require high temperature. By using an enzyme, reaction can occur more quickly at body temperature. Some examples of digestive enzymes are Salivary amylase, Pepsin (a protease), and Pancreatic lipase. Stomach: Food is brought to your stomach by a molecular tube called the oesophagus. Gastric juice is a mixture of three secretions from the cells of the stomach inner lining. Pepsin- a protease enzyme most active in acidic pH Hydrochloric acid- helps degrade and break down foods and create the acidic pH necessary for pepsin to be active Mucus- lines the inside of the stomach wall to prevent stomach damage from the hydrochloric acid Small intestine: The first portion of the small intestine is called the duodenum.
    • These secretions include: Bile from the liver and gall bladders trypsin ( a protease) lipase, amylase, and bicarbonate from the pancreas The digestive process continues in the small intestines, molecules are produced that are small enough to be absorbed. Inner wall of the small intestine is made up of thousands of finger like extensions called villi. Most of the molecules absorbed are taken into the capillary bed within each villus.Large intestines: The vast majority of useful nutrients are absorbed while food is still inside the small intestines. What remains of the original food at the end of the small intestines is undigested. Much of the water that we drink or that is naturally contained in many foods is still present. The primary function of the large intestine is water absorption. The large intestine is also home to a very large member of large intestines of naturally occurring bacteria, including Escherichia coli. These bacteria are examples of mutualistic organisms within us. We provide nutrients, water, and a warm environment while synthesize vitamin K and maintain a healthy overall environment for us in our large intestine.
    • 6.2: The transport system The human heart is designed as a pair of side by side pumps. Each side of the heart has a collection chamber for blood that is moving slowly and from the veins. Theses thin walls, must cular chambers are called atria each side also has a thick wall, muscular pump(called a ventricle), this builds up enough pressure to send the blood out from the heart with a force called blood pressure. The double sided pump work every minute of every day of your life. Blood pump out from the heart usually makes a circuit through following range of blood vessels. A large artery Smaller artery branches An arteriole (smallest type of arteria) A capillary bed A venule( cmallest type of vein) A large vein Larger veins The two sides of the heart allow for there being two routes for blood to flow along . The right side of your heart allows for blood to be routed called you pulmonary circulations. The capillary bed is in one lung, and blood picks up oxygen and releases carbon dioxide. He left side of the heart sends blood along a route that is called you systemic circulation. On this route the capillary bed is in one organ or tissue and picks up co2 releasing oxygen Pulminary Circulation This contraction initiates several events: Closure of the atrioventricular valve to prevent back flow to the right atrium ( closing of valve produces ‘lud dub’ Increase in blood pressure opens right semi lunar valve Due to the increase in pressure blood leaves the heart through the pulmonary arterySystemic circulation Closure of the atrioventricular valve to prevent back flow into the left atrium Dramatic increase in blood pressure inside the left ventricle which opens the left semilunar valve and allows blood to enter aorta Due to increase in pressure, blood leaves the heart through aorta Control of Heart Rate The majority of the tissue making up the heart is muscle. The right atrium of tissues within its walls known as the sinoatrial node. This mass of tissue acts as peace maker for the heart. It sends out an electrical signal to initiate the contraction of both atria. Arteries capillaries and veins- Arteries are blood vessels taking blood away from the heart that has not yet reached a capillaries
    • Veins are blood vessels that collect blood from capillaries and return it to the heart.Arteries have a relatively thick smooth muscle layer that is used autonomic nervous system tochange the inside diameter of the blood vessels. This helps to regulate blood pressure.Blood in arteries were at high pressure as arteries directly ventricles of the heart.Much of the pressure is lost. Blood cells make their way though capillaries one cell at a time. Veinsreceive blood at low pressure from capillary beds. Because this blood has lost a great deal of bloodpressure, the blood flow through veins is slower through arteries6.3 Defence Against infectious diseasePathogens cause diseaseAny living organism or virus that is capable of causing a disease is called a pathogen. Pathogensinclude viruses, bacteria, protozoa fungi and warts of various types.How antibiotics work against bacteriaBacteria are prokaryotic cells and our bodies are eukaryotic cells. The difference between the twotypes of cells are biochemical reactions and pathways. One type of antibiotic may selectively blockprotein synthesis from bacteria, but has no effect on our body cells