start
<ul><li>Identify the type of HVAC system being used on a vehicle. </li></ul><ul><li>Describe how dual-climate and rear air...
<ul><li>afterblow • ambient air temperature sensor • aspirator tube • automatic temperature control (ATC) system cabin fil...
AIRFLOW MANAGEMENT <ul><li>All automatic heating, ventilation, and air-conditioning (HVAC) systems use a combination of th...
Figure 49–1  The three major portions of the A/C and heat system are air inlet, plenum, and air distribution. The shaded p...
<ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Heat </li></ul>Continued <ul...
<ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Air-Conditioning </li></ul>C...
<ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Ventilation </li></ul>Contin...
<ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Defogging or Defrosting the ...
<ul><li>The engine has been off for 30 minutes. </li></ul><ul><li>The outside air temperature is 70°F (21°C) or higher. </...
Figure 49–2 The ambient temperature sensor in this system is located in the fresh air intake duct for the HVAC system. <ul...
<ul><li>Inside Vehicle Temperature Sensor   Older ATC systems used a sensor located behind the instrument panel. Air to th...
<ul><li>Sunload Sensor   Mounted on the dash, they adjust temperature and fan speed to match increased heating through the...
ACTUATORS <ul><li>Actuators move vanes or valves. Actuators in air-conditioning systems are electric or vacuum operated. H...
Figure 49–3  A block diagram showing the inputs to the electronic control assembly and the outputs; note that some of the ...
CABIN FILTERS <ul><li>Most late-model air-conditioning systems include a  cabin filter , which is an air filter in the out...
Figure 49–4  A typical cabin filter being removed from behind the glove compartment. NOTE:   Some cabin filters contain ac...
VACUUM CONTROL CIRCUITS <ul><li>Vacuum control circuits use vacuum created in the intake manifold of the engine.  </li></u...
ELECTRIC SERVOMOTOR CIRCUITS <ul><li>Most HVAC systems use electric motors to move valves and doors.  Each servomotor cont...
Figure 49–6  Three electric actuators can be easily seen on this demonstration unit. However, accessing these actuators in...
BLOWER MOTOR CONTROL <ul><li>Blower motors are used to move air. The air is directed by the doors of the HVAC system. Most...
Figure 49–8  A typical blower motor assembly with attached squirrel cage blower. A replacement motor does not include the ...
DUAL-ZONE AIR CLIMATE CONTROL <ul><li>Dual-zone climate controls allow the driver and the passenger to select different te...
Figure 49–10  A dual climate control system showing the airflow and how it splits.
REAR AIR-CONDITIONING SYSTEM <ul><li>Many larger trucks, vans, and sport utility vehicles (SUVs) are equipped with rear he...
<ul><li>Larger capacity air-conditioning compressor </li></ul><ul><li>Second evaporator at rear of the vehicle </li></ul><...
Figure 49–13  A sticker on a vehicle equipped with rear heat and air-conditioning warning that a special service procedure...
RECIRCULATION OPERATION <ul><li>When recirculation is selected, about 90% of the air is drawn from the passenger compartme...
<ul><li>Hybrid electric vehicle  ( HEV ) systems need to be different than conventional systems because the engine stops w...
SUMMARY <ul><li>HVAC systems are designed to be able to deliver airflow to the windshield for defogging or defrosting as w...
SUMMARY <ul><li>Actuators include dual-position, three-position, and variable position actuators. </li></ul><ul><li>Most v...
end
Upcoming SlideShare
Loading in...5
×

Chapter 49

124

Published on

0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
124
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Chapter 49

  1. 1. start
  2. 2. <ul><li>Identify the type of HVAC system being used on a vehicle. </li></ul><ul><li>Describe how dual-climate and rear air-conditioning systems work. </li></ul><ul><li>Discuss vacuum and electric motor controls. </li></ul><ul><li>Explain how both heated and cooled air is blended. </li></ul>OBJECTIVES: After studying Chapter 49, the reader should be able to:
  3. 3. <ul><li>afterblow • ambient air temperature sensor • aspirator tube • automatic temperature control (ATC) system cabin filter discharge air temperature (DAT) sensor • dual-position actuator hybrid electric vehicle (HEV) </li></ul><ul><li>photo diode • three-position actuator variable-position actuator </li></ul>KEY TERMS:
  4. 4. AIRFLOW MANAGEMENT <ul><li>All automatic heating, ventilation, and air-conditioning (HVAC) systems use a combination of the following components to control airflow into the passenger compartment: </li></ul>Continued <ul><li>Vents </li></ul><ul><li>Ducts </li></ul><ul><li>Air doors (also called flap doors or valves) </li></ul>The use of these components allows the system to provide airflow under the following conditions: <ul><li>Fresh outside air or recirculated air </li></ul><ul><li>Air conditioning </li></ul><ul><li>Defrost </li></ul><ul><li>Heat </li></ul>
  5. 5. Figure 49–1 The three major portions of the A/C and heat system are air inlet, plenum, and air distribution. The shaded portions show the paths of the four control doors. Continued
  6. 6. <ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Heat </li></ul>Continued <ul><li>Temperature set to the desired setting </li></ul><ul><li>Air intake—select outside air (for faster heating, select recirculation for the first few minutes) </li></ul><ul><li>Air conditioning set to off </li></ul><ul><li>Set airflow to flow </li></ul><ul><li>Fan speed to desired speed </li></ul>
  7. 7. <ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Air-Conditioning </li></ul>Continued <ul><li>Temperature set to the desired setting </li></ul><ul><li>Air intake—set to outside air (for faster cooling, select recirculation for the first few minutes) </li></ul><ul><li>Airflow—select dash vents (also called panel vents) </li></ul><ul><li>Air conditioning set to on </li></ul><ul><li>Fan speed set to desired speed </li></ul>
  8. 8. <ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Ventilation </li></ul>Continued <ul><li>Temperature set to lowest temperature </li></ul><ul><li>Air intake—select outside air </li></ul><ul><li>Airflow—set to dash (panel) vents </li></ul><ul><li>Air conditioning set to off </li></ul><ul><li>Fan speed set to desired speed </li></ul>
  9. 9. <ul><li>Typical settings for a manual or automatic air-conditioning system. </li></ul><ul><li>Defogging or Defrosting the Inside of the windshield </li></ul>Continued <ul><li>Temperature set to high temperature </li></ul><ul><li>Air intake set to outside air </li></ul><ul><li>Airflow set to windshield </li></ul><ul><li>Fan speed set to desired speed </li></ul>
  10. 10. <ul><li>The engine has been off for 30 minutes. </li></ul><ul><li>The outside air temperature is 70°F (21°C) or higher. </li></ul><ul><li>The battery voltage is 12 volts or higher. </li></ul>Afterblow is a term used to describe the operation of the blower motor after the ignition has been turned off. The purpose of afterblow is to dry the evaporator to help prevent the formation of mold and mildew in the evaporator case. The operation of the blower motor after the ignition is turned off has created some customer complaints. What is Afterblow? If the above conditions exist, the afterblow is commanded to be on for 20 seconds, off for 10 seconds, and back on for another 20 seconds. Check service information to be sure that the condition is normal or not on the vehicle being investigated. For example, in a typical General Motors system, the following conditions must be met for afterblow to occur:
  11. 11. Figure 49–2 The ambient temperature sensor in this system is located in the fresh air intake duct for the HVAC system. <ul><li>Automatic temperature control ( ATC ) systems are similar to a normally adjusted system but with additional sensors. </li></ul>Continued AUTOMATIC AIR-CONDITIONING Outside Air Temperature ( OAT ) Sensor Usually located at the front of the vehicle behind the grille but in front of the radiator. This sensor, commonly called the ambient air temperature sensor and is also supply temperature information for the driver on a display.
  12. 12. <ul><li>Inside Vehicle Temperature Sensor Older ATC systems used a sensor located behind the instrument panel. Air to the sensor was forced to flow past the sensor by using an aspirator tube , which was connected to the blower motor case. Discharge Air Temperature Sensor ( DAT ) Located at the outlet of the vents. The purpose of this sensor is to inform the controller of the actual temperature at the discharge ducts. Evaporator Outlet Temperature Sensor Used to control the AC compressor to keep the evaporative temperature within the specified temperature range for most efficient operation. </li></ul>Continued
  13. 13. <ul><li>Sunload Sensor Mounted on the dash, they adjust temperature and fan speed to match increased heating through the windows from the sun. A common type of sunload sensor is a photo diode . </li></ul>NOTE: Some vehicles are equipped with a dual-zone sunload sensor that has two sensors included. This sensor allows the system to automatically adjust the airflow and air temperature based on the actual sun intensity experienced by both the driver and the passenger.
  14. 14. ACTUATORS <ul><li>Actuators move vanes or valves. Actuators in air-conditioning systems are electric or vacuum operated. Here are three types: </li></ul><ul><li>Dual-Position Actuator Able to move either open or closed. An example is the recirculation door, which can be open or closed. Three-Position Actuator Provides three air door positions, such as the bi-level door, to allow defrost only, floor only, or a mix. Variable-Position Actuator Capable of positioning a valve in any position. All variable-position actuators use a feedback potentiometer, which is used by the controller to detect the actual position of the door or valve. See Figure 49–3. </li></ul>Continued
  15. 15. Figure 49–3 A block diagram showing the inputs to the electronic control assembly and the outputs; note that some of the outputs have feedback to the ECM. See the chart on Page 567 of your textbook.
  16. 16. CABIN FILTERS <ul><li>Most late-model air-conditioning systems include a cabin filter , which is an air filter in the outside air inlet. The purpose of the cabin filter is to filter dirt and dust from the air before it enters the interior of the vehicle. Cabin air filters can be accessed either in the dash, usually behind the glove box, or from under the hood. Cabin air filters should be replaced regularly, usually every two years during normal service and more often if the vehicle is driven in dusty areas. See Figure 49–4. </li></ul>Continued
  17. 17. Figure 49–4 A typical cabin filter being removed from behind the glove compartment. NOTE: Some cabin filters contain activated charcoal which absorbs hydrocarbons and helps to deodorize the air as it enters the interior. For best results, use the designated replacement filter.
  18. 18. VACUUM CONTROL CIRCUITS <ul><li>Vacuum control circuits use vacuum created in the intake manifold of the engine. </li></ul>Figure 49–5 With no vacuum signal, the spring extends the actuator shaft to place the door in a certain position (top). A vacuum signal pulls the shaft inward and moves the door to the other position (bottom). Because vacuum decreases close to zero during heavy acceleration, a vacuum accumulator is used to store vacuum during short periods of acceleration.
  19. 19. ELECTRIC SERVOMOTOR CIRCUITS <ul><li>Most HVAC systems use electric motors to move valves and doors. Each servomotor contains a feedback potentiometer, which is used by the air conditioning control unit to indicate the actual position of the valve or door. If the commanded position and the actual position are not the same, then most systems are designed to store a diagnostic trouble code indicating which door is out of calibration. See Figures 49–6 and 49-7. </li></ul>Continued
  20. 20. Figure 49–6 Three electric actuators can be easily seen on this demonstration unit. However, accessing these actuators in a vehicle can be difficult. Figure 49–7 The feedback circuit signals the AC control unit with the blend door position.
  21. 21. BLOWER MOTOR CONTROL <ul><li>Blower motors are used to move air. The air is directed by the doors of the HVAC system. Most blower motors use resistors to control speed of the motors by dropping the amount of current flow through the motor at the lower speed. The resistor lowers voltage and current to the motor. The control allows full system voltage to be applied to the motor during high-speed operation. The blower motor resistor is always located in the plenum near the blower motor so that airflow past the resistor can help keep it cool. See Figures 49–8 and 49–9. </li></ul>Continued
  22. 22. Figure 49–8 A typical blower motor assembly with attached squirrel cage blower. A replacement motor does not include the squirrel cage blower so it needs to be switched to the replacement. Figure 49–9 A “credit card” resistor used in the rear blower assembly in a Dodge minivan.
  23. 23. DUAL-ZONE AIR CLIMATE CONTROL <ul><li>Dual-zone climate controls allow the driver and the passenger to select different temperatures, as much as a 30°F (17°C) difference. In a dual-zone climate control system, the ducts and airflow are split and two air mix doors are used, with each door being controlled by its own actuator. See Figure 49–10. </li></ul>Continued
  24. 24. Figure 49–10 A dual climate control system showing the airflow and how it splits.
  25. 25. REAR AIR-CONDITIONING SYSTEM <ul><li>Many larger trucks, vans, and sport utility vehicles (SUVs) are equipped with rear heat and air-conditioning units. Many vehicles are equipped with ducts that route heated or cooled air to rear-seat passengers. </li></ul>Continued Figure 49–11 A typical dual-zone climate control panel showing left and right side temperature control levers.
  26. 26. <ul><li>Larger capacity air-conditioning compressor </li></ul><ul><li>Second evaporator at rear of the vehicle </li></ul><ul><li>Second heater core at rear of the vehicle </li></ul><ul><li>Second blower motor and control </li></ul><ul><li>Lines and fittings connecting front heater and air-conditioning components to the rear system. </li></ul><ul><li>Rear controls for speed & temperature </li></ul>Figure 49–12 Heated or cooled air is supplied to the rear seat passengers of most vehicles through ducts that run under the front seats. However, many larger vehicles require a separate heater core and air-conditioner evaporator in the rear to provide adequate heating and cooling. Most rear HVAC systems include the following components:
  27. 27. Figure 49–13 A sticker on a vehicle equipped with rear heat and air-conditioning warning that a special service procedure is needed when replacing engine coolant.
  28. 28. RECIRCULATION OPERATION <ul><li>When recirculation is selected, about 90% of the air is drawn from the passenger compartment and the other 10% is drawn from outside air. The purpose is to speed up the cooling of the inside of the vehicle. However, the body control module may also select recirculation operation if the high-side air-conditioning system pressures exceed 320 psi (2,200 kPa) to help lower the high-side pressure using cooler inside air through the evaporator. This condition should not normally occur, but if it does, this could cause a customer concern because the blower noise is greatly increased in the recirculation position. </li></ul>Continued
  29. 29. <ul><li>Hybrid electric vehicle ( HEV ) systems need to be different than conventional systems because the engine stops when at idle if the engine is warm. As a result, the engine-driven air-conditioning compressor will also stop. To allow idle-stop mode and still provide air conditioning, several methods are used: </li></ul>HYBRID ELECTRIC VEHICLE HEATING AND COOLING SYSTEMS <ul><li>Idle-stop mode is disabled if max cooling is selected. </li></ul><ul><li>Honda uses a hybrid compressor which has a smaller capacity, operated by an electric motor, powered by the high-voltage (HV) batteries. </li></ul><ul><li>Toyota uses an air-conditioning compressor entirely driven by the HV batteries, capable of providing cooling under all conditions, including when the engine is not operating. </li></ul>
  30. 30. SUMMARY <ul><li>HVAC systems are designed to be able to deliver airflow to the windshield for defogging or defrosting as well as to the floor or dash vents. </li></ul><ul><li>HVAC systems are designed to use outside air, recirculated air, or a combination of the two. </li></ul><ul><li>Sensors used in automotive air-conditioning systems include outside air temperature (OAT), inside vehicle temperature, discharge air temperature (DAT), evaporator outlet temperature, and sunload sensors. </li></ul>Continued
  31. 31. SUMMARY <ul><li>Actuators include dual-position, three-position, and variable position actuators. </li></ul><ul><li>Most valves and airflow doors are electrically driven by motors and a feedback potentiometer. </li></ul><ul><li>Rear air-conditioning systems use a second heater core and evaporator at the rear of the vehicle. </li></ul><ul><li>Hybrid electric vehicles use a variety of components and systems to be able to provide air conditioning under idle-stop conditions. </li></ul>( cont. )
  32. 32. end

×