Absolute Value Graphs Finding The Vertex, Roots,  & Graphs
1 st  Determine the direction <ul><li>Up or down? </li></ul><ul><li>Determined by + or – in front of the absolute value ba...
2 nd  Determine the steepness <ul><li>This is a little trickier </li></ul><ul><li>Can be determined 2 ways </li></ul><ul><...
2 nd  Determine the steepness <ul><li>Either (alone or working together) can make the graph steeper or more shallow </li><...
3 rd  Find the Vertex – y coordinate <ul><li>The y coordinate is easy. You always grab what is added or subtracted to the ...
3 rd  Find the Vertex – x coordinate <ul><li>To find the x coordinate, you take what’s in the AV brackets and set it up eq...
What is the Vertex? <ul><li>To find the x coordinate, you take what’s in the AV brackets and set it up equal to 0 </li></u...
Find the roots <ul><li>What’s a root? </li></ul><ul><li>It’s where the graph crosses the x axis. </li></ul><ul><li>Also ca...
Find the roots <ul><li>Make y = 0 </li></ul><ul><li>Isolate the AV brackets on one side of the equal sign. </li></ul><ul><...
Find the roots <ul><li>If the AV = a +# then squiggle! </li></ul><ul><li>Drop the AV bars </li></ul><ul><li>On the left si...
Find the roots <ul><li>Some graphs only have one root because the vertex is sitting right on the x-axis! </li></ul>05/29/0...
Now you are ready to graph <ul><li>Sketch your quick graph. </li></ul><ul><li>Plot your vertex. </li></ul><ul><li>Plot you...
Review 05/29/09 Extra Lesson  Bitsy Griffin
Upcoming SlideShare
Loading in...5
×

Absolute Value Graphs

13,620

Published on

Published in: Technology
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
13,620
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
11
Comments
0
Likes
1
Embeds 0
No embeds

No notes for slide

Absolute Value Graphs

  1. 1. Absolute Value Graphs Finding The Vertex, Roots, & Graphs
  2. 2. 1 st Determine the direction <ul><li>Up or down? </li></ul><ul><li>Determined by + or – in front of the absolute value bars </li></ul><ul><li>+ will go up </li></ul><ul><li>- will go down </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  3. 3. 2 nd Determine the steepness <ul><li>This is a little trickier </li></ul><ul><li>Can be determined 2 ways </li></ul><ul><li>1 st is by number outside of AV brackets </li></ul><ul><li>2 nd is by number in front of X </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  4. 4. 2 nd Determine the steepness <ul><li>Either (alone or working together) can make the graph steeper or more shallow </li></ul><ul><li>¼|x| =y </li></ul><ul><li>|4x| =y </li></ul><ul><li>Working together they can virtually wipe each other out ¼ |4x| =y </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  5. 5. 3 rd Find the Vertex – y coordinate <ul><li>The y coordinate is easy. You always grab what is added or subtracted to the AV brackets. </li></ul><ul><li>What is added or subtracted to the AV Brackets? </li></ul><ul><li>y = |x| </li></ul><ul><li>y = | 9x + 3 | - 4 </li></ul><ul><li>y = 3|x – 2| </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  6. 6. 3 rd Find the Vertex – x coordinate <ul><li>To find the x coordinate, you take what’s in the AV brackets and set it up equal to 0 </li></ul><ul><li>y = |x| </li></ul><ul><li>x = 0 </li></ul><ul><li>y = | 9x + 3 | - 4 </li></ul><ul><li>9x + 3 = 0 </li></ul><ul><li>y = -3| x – 2| </li></ul><ul><li>x – 2 = 0 </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  7. 7. What is the Vertex? <ul><li>To find the x coordinate, you take what’s in the AV brackets and set it up equal to 0 </li></ul><ul><li>y = |x| </li></ul><ul><li>(0, 0) </li></ul><ul><li>y = | 9x + 3 | - 4 </li></ul><ul><li>(-1/3 ,-4) </li></ul><ul><li>y = -3| x – 2| </li></ul><ul><li>(2, 0) </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  8. 8. Find the roots <ul><li>What’s a root? </li></ul><ul><li>It’s where the graph crosses the x axis. </li></ul><ul><li>Also called the zeros sometimes. </li></ul><ul><li>Not all graphs will cross the x axis – that’s why some have no solution. </li></ul><ul><li>You already know how to find the roots. </li></ul><ul><li>It’s the same lesson we already had on solving AV equations earlier. </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  9. 9. Find the roots <ul><li>Make y = 0 </li></ul><ul><li>Isolate the AV brackets on one side of the equal sign. </li></ul><ul><li>If the AV = a -# then there is NO solution! </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  10. 10. Find the roots <ul><li>If the AV = a +# then squiggle! </li></ul><ul><li>Drop the AV bars </li></ul><ul><li>On the left side of the squiggle, set what was in the AV up equal to the positive answer. </li></ul><ul><li>On the right side of the squiggle, set what was in the AV up equal to the negative of the answer. </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  11. 11. Find the roots <ul><li>Some graphs only have one root because the vertex is sitting right on the x-axis! </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  12. 12. Now you are ready to graph <ul><li>Sketch your quick graph. </li></ul><ul><li>Plot your vertex. </li></ul><ul><li>Plot your roots if you have them. </li></ul><ul><li>Draw your graph. </li></ul><ul><li>If you don’t have any roots, or if the vertex is on the x-axis, you have to use the direction and steepness as a guide, but you can still sketch the graph. </li></ul>05/29/09 Extra Lesson Bitsy Griffin
  13. 13. Review 05/29/09 Extra Lesson Bitsy Griffin

×