Your SlideShare is downloading. ×
Arranca El Programa De InvestigacióN Del Gran Colisionador
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Arranca El Programa De InvestigacióN Del Gran Colisionador

318
views

Published on

Después de 14 meses de reparaciones logran por primera vez una colisión de protones en el LHC. ¿Qué significa para la humanidad? ¿Por qué se hace esto? Aquí les dejo dos artículos del SINC (Servicio …

Después de 14 meses de reparaciones logran por primera vez una colisión de protones en el LHC. ¿Qué significa para la humanidad? ¿Por qué se hace esto? Aquí les dejo dos artículos del SINC (Servicio de Información y Noticias Científicas) que nos lo aclaran.


0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
318
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Arranca el programa de investigación del Gran Colisionador El éxito de las colisiones en el LHC inaugura los nuevos descubrimientos de la física El descubrimiento de la misteriosa materia oscura del Universo, la confirmación de la existencia de una supersimetría entre las partículas y el hallazgo del escurridizo bosón de Higgs son algunos de los enigmas de la Física que podrían resolverse en los próximos dos años gracias al éxito alcanzado hoy por el Gran Colisionador de Hadrones (LHC) del CERN, en la frontera franco-suiza. Esta mañana dos haces de protones han colisionado en el LHC a 7 teraelectronvoltios (TeV), la mayor energía alcanzada jamás en un acelerador de partículas. SINC Europa 30.03.2010 14:22 Tras unas horas de retraso por incidencias técnicas, a las 13.06 horas dos paquetes de protones que circulaban por el gigantesco anillo de 27 kilómetros del LHC han chocado. En la imagen, el centro de control del CERN. Foto: SINC. El momento que miles de físicos de partículas de todo el mundo estaban esperando ha sucedido esta mañana en el CERN, no muy lejos de Ginebra (Suiza). Tras unas horas de retraso por incidencias técnicas, a las 13.06 horas dos paquetes de protones que circulaban por el gigantesco anillo de 27 kilómetros del LHC han chocado, según han confirmado los cuatro detectores (CMS, ATLAS, ALICE y LHCb) de la gran máquina. Comienza así el programa de investigación del mayor colisionador de partículas del mundo. Los científicos del CERN han arrancado en aplausos cuando las pantallas de sus ordenadores se han iluminado con los gráficos de colores que confirmaban el éxito de las colisiones. “Las manchas azules y rojas son depósitos de energía del calorímetro (medidor de la energía de las partículas) y las rayas amarillas representan las trayectorias que han seguido las partículas cargadas durante la colisión”, explica a SINC Juan Alcaraz, investigador principal del proyecto del CIEMAT en el detector CMS. Los haces han circulado en sentido contrario a 3,5 TeV cada uno, la mayor energía conseguida hasta ahora en un acelerador, pero al colisionar se ha generado el doble: 7 TeV. Esto supone 3,5 veces más que los aproximadamente 2 TeV con los que trabajan en el colisionador Tevatrón del Fermilab, la “competencia” del LHC en Estados Unidos. A partir de este momento, y a lo largo de entre 18 y 24 meses, comienza “la serie más grande de nuevos descubrimientos potenciales que los físicos de partículas han visto en más de una década”, según ha señalado Rolf Heuer, Director General del CERN. Supersimetría y materia oscura Heuer, que de viaje por Japón ha compartido por videoconferencia el éxito del acontecimiento, ha destacado que el LHC “tiene una oportunidad real en los próximos dos años de descubrir
  • 2. partículas supersimétricas, posiblemente elucidando la naturaleza de la materia oscura, que constituye cerca de un cuarto del Universo”. La supersimetría es una hipótesis que plantea que a cada una de las partículas elementales de la materia, divididas en fermiones (como los quarks) y bosones (como el fotón), le corresponde un compañero supersimétrico bosón o fermión respectivamente. Así, por ejemplo, el quark “arriba” tiene una partícula supersimétrica “sarriba”, y el fotón tiene otra denominada “fotino”, ninguna de las dos descubiertas hasta ahora. La partícula supersimétrica más ligera sería el neutralino (en el que participa el “fotino”, entre otros), y podría ser clave para explicar la naturaleza de la materia oscura, que de momento no se ha podido detectar directamente. Los detectores ATLAS y CMS tendrán cada uno datos suficientes para duplicar la sensibilidad a partículas supersimétricas establecida hasta ahora, de hasta 400 GeV). El LHC elevará el rango de descubrimiento hasta 800 GeV. Los experimentos del LHC también explorarán la posibilidad de encontrar nuevas partículas masivas y dimensiones “extra” (además de las tres conocidas) hasta masas de 2 TeV (también el doble del 1 TeV actual), así como continuar la investigación sobre la asimetría materia- antimateria o sobre por qué las dos no se aniquilaron mutuamente en los instantes siguientes al Big Bang. En busca del bosón de Higgs Además de estos descubrimientos potenciales, el programa de investigación del LHC se centrará en la búsqueda del bosón de Higgs, o al menos descartar que se encuentra en determinados rangos de energía. Esta partícula mítica en el campo de la física podría explicar la masa de otras partículas elementales y muchos aspectos de la estructura de la materia. Tan pronto como se hayan "redescubierto" las partículas conocidas del Modelo Estándar aceptado por los científicos, un paso previo necesario antes de buscar “la nueva física”, los experimentos del LHC iniciaran la búsqueda sistemática del bosón de Higgs. Con las colisiones cruzadas el análisis combinado de ATLAS y CMS será capaz de explorar un amplio rango de masas, e incluso hay una oportunidad de descubrir si el bosón de Higgs tiene una masa de cerca de 160 GeV. Si es mucho más ligero o muy pesado, será más difícil de encontrar en esta primera carrera del LHC. Miles de científicos en todo el mundo esperan impacientes la llegada de los datos del LHC a través de la red de computación Grid, entre ellos más de dos mil estudiantes de doctorado para elaborar sus tesis. Después de esta “primera carrera” de alrededor de dos años del LHC –con una pequeña parada técnica entre medias-, la gran máquina se apagará para realizar el mantenimiento rutinario y poder completar los trabajos necesarios para alcanzar la energía para la que está diseñado:14 TeV. Hasta ahora el CERN operaba en ciclos anuales. "Dos años de funcionamiento continuo es mucho pedir tanto para los operadores como los experimentos del LHC, pero valdrá la pena el esfuerzo", concluye Heuer. ___________________________________________________________ Declaraciones de los portavoces de los cuatro experimentos del LHC
  • 3. ATLAS, Fabiola Gianotti: "Con estas energías de colisión récord, los experimentos del LHC se dirigen a una vasta región por explorar, y comienza la caza de materia oscura, nuevas fuerzas, nuevas dimensiones y el bosón de Higgs. El hecho de que los experimentos ya han publicado artículos científicos con los datos del año pasado es muy buena señal para esta primera carrera de la física”. CMS, Guido Tonelli: "Todos hemos quedado impresionados con el rendimiento del LHC hasta ahora, y es particularmente satisfactorio ver cómo nuestros detectores de partículas están trabajando, mientras que nuestros equipos de física en todo el mundo ya están analizando los datos. Nos dirigiremos pronto a algunos de los mayores misterios de la física moderna, como el origen de la masa, la gran unificación de las fuerzas y la presencia de la abundante materia oscura en el universo. Espero momentos muy emocionantes frente de nosotros”. ALICE, Jürgen Schukraft: "Este es el momento que esperábamos y para el que nos hemos preparado. Estamos deseando obtener los resultados de las colisiones de protones, y este año, más adelante, de colisiones de iones de plomo, para darnos nuevas pistas sobre la naturaleza de la interacción fuerte y la evolución de la materia en el Universo temprano”. LHCb, Andrei Golutvin: “LHCb está listo para la física. Tenemos un gran programa de investigación por delante de nosotros para explorar la naturaleza de la asimetría materia- antimateria en más profundidad como jamás se había hecho antes". Fuente: SINC Entrevista a Teresa Rodrigo, física española en el CERN “Con el LHC se abrirán nuevas vías de comprensión de la naturaleza” Teresa Rodrigo (Lérida, 1956), catedrática de Física Atómica, Molecular y Nuclear de la Universidad de Cantabria e investigadora del Instituto de Física de Cantabria (IFCA), trabaja ahora en el Gran Colisionador de Hadrones (LHC) del CERN, cerca de Ginebra. La científica acaba de ser nombrada presidenta del Consejo de Colaboración del detector CMS. En el centro de control de este experimento SINC ha hablado con la investigadora hoy, el día en que el LHC ha conseguido la mayor energía de colisión entre partículas (7 teralectronvoltios). SINC Europa 30.03.2010 17:39 ¿Cómo ha vivido el momento de las colisiones? Aunque parezca mentira me he emocionado mucho, porque lo llevamos esperando hace muchos años. Es una época maravillosa la que empieza ahora. ¿Y qué suponen para el CMS las colisiones a 7 TeV? La colaboración esta con todos sus ojos y talento preparada para explotar lo mejor posible los nuevos datos. Es un momento muy esperado, entramos en una nueva región de energía y no sabemos todavía que nos deparara. Lo que es seguro es que con el LHC se abrirán nuevas vías de compresión de la naturaleza y esto es siempre excitante.
  • 4. ¿Cree que el LHC toma ventaja respecto a su máximo competidor, el Tevatrón del laboratorio Fermilab (EEUU), en el que usted también participa? Una ventaja fundamental es que la energía ahora en el LHC es 7TeV y en el Tevatrón son 2 TeV, y de esta forma aquí se tiene acceso a una región de energía a la que no se puede acceder allí. Pero el Tevatrón lleva tomando datos 20 años y juegan con la ventaja de una estadística acumulada. Estos dos factores se compensan de alguna manera. ¿Cómo valora el acontecimiento de hoy, en general? Creo que es un acontecimiento muy relevante para la comunidad científica en general, no solo para nuestra especialidad. El proyecto LHC es uno de los mayores proyectos científicos concebidos y su éxito es muy muy importante para el buen desarrollo de la ciencia y la tecnología. Su escala es mundial, y a partir de ahora pueden descubrirse hechos relevantes en la física de partículas. Y en ese camino va a presidir el Consejo de Colaboración del CMS. ¿Cuándo comienza a ejercer como presidenta? El mandato comienza el 1 de enero de 2011. La duración es por dos años. Durante este tiempo hay un solapamiento con el actual presidente para garantizar la mejor continuidad posible en el trabajo. ¿Qué representa este nombramiento para usted? Una responsabilidad importante y también un honor el poder desempeñarlo. Creo que es un puesto importante que pone de manifiesto el buen trabajo y contribución de la comunidad española en este gran proyecto científico que es el LHC y en particular CMS. ¿En qué ha consistido la investigación del CMS hasta ahora? Los grupos españoles llevamos trabajando en CMS desde sus comienzos, hace casi 20 años. Hemos contribuido a las diferentes fases del experimento, diseño y construcción del detector y de la infraestructura de software y computing del experimento en estos años. Y ahora a la operación del detector y al análisis de datos y explotación científica. ¿Y el papel que ha jugado el equipo del IFCA? El IFCA es uno de los 4 grupos españoles en CMS, junto con el CIEMAT, la Universidad de Oviedo y la Universidad Autónoma de Madrid. Creo que el IFCA ha desarrollado una contribución importante en la línea de trabajo de estos grupos en CMS. Nos hemos concentrado principalmente, hasta ahora, en la contribución al sistema de muones de CMS y en la infraestructura de computing. En concreto el IFCA se ha dedicado en especial al sistema de alineamiento de muones y al desarrollo de uno de los centros de computación (Tier2) españoles para CMS. ¿Qué es exactamente un sistema de alineamiento del detector de muones? Un sistema de alineamiento es un conjunto de "reglas o patrones" de medida (hechas de láseres y sensores) distribuidas por todo el detector de CMS, para monitorear de forma continua las posiciones en el espacio de los distintos elementos de detección. Estas "reglas" son de gran precisión. Tienen que informar con una precisión de decimas de milímetro sobre la posición de objetos de dimensiones muy grandes, de aproximadamente 20m x 20m x 20m de volumen. Y a partir de ahora, ¿cuales son los siguientes proyectos? Ahora toca la participación en la toma de datos y la explotación científica del experimento, y ahí
  • 5. estamos. Sin olvidar por supuesto el trabajo en investigación y desarrollo (I+D) para futuras mejoras u otros proyectos científicos que sucederán a CMS y el LHC. Fuente: SINC