Your SlideShare is downloading. ×
4.1 4.2 Notes A
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

4.1 4.2 Notes A

139
views

Published on

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
139
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Open er!!! January 4th & 5th:     4.1 Getting Started with Slope Open your books to  1. With your partner, determine which roof is the  page 309. steepest.  Then write down how you might explain how  you decided which roof is the steepest to a person who  does not understand the words steep  or slope. (4  minutes) 2a. What are the rise and run of the gable end? 2c. What is the mathematical process we would need to  follow to find the length of each of the vertical boards? 1
  • 2. For You to Explore: Take 4 minutes to discuss and record your ideas for Tony  and Sasha's bike trip.  Be prepared to share your ideas  with the rest of the class. 3a. Who rode faster, Tony or Sasha?  Explain. 3b. What does the intersection of the lines represent? 3c. How many miles did Sasha travel in an hour? 3d. How many miles did Tony travel in an hour? Checkpoint: Draw  After each equation is shown, "draw" the general  that graph! shape of the corresponding graph in the air with your  finger. a. y =x b. y = x2 c. y = 5x + 2 d. y = x3 + 5 e. y = 4x2 ‐ 13 + 2x ‐ 7 f. y = 2(13 ‐ 7x) 2
  • 3. 4.2 Pitch and Slope Using pitch and slope: Pitch:  Used by _________ to describe the steepness of a  roof. •   •     Slope: Used by _____________ to describe the  steepness of a line between two points in the Cartesian  plane. •    •      Finding the slope  Find the slope of the line that connects A(3,1) and  between 2 points: B (7,9). Find two other points, S and T, such that m(S, T) is the  same as m(A, B). Is m(S, T) = m(T, S)? Finding slope  With your partner, find the slope between the points  continued... R(7,2) and S (10,0).  Defining Slope: Given the two points A (x1, y1) and B (x2, y2): m(A,B) =  rise  =        y  =  y2 ‐ y1  run            x       x2 ‐ x1 Positive/ Negative Slope: Magnitude of Slope: Special slope cases:  Find the slope between (4, 8) and (4, 2). Find the slope between (7,2) and (3,2) 3
  • 4. Exit Slip: Write an example of two slopes for each of the  Complete on a  following statements: separate half‐sheet with your partner. a. a positive slope and a negative slope that is steeper b. a negative slope and a positive slope with the same  steepness c. two pairs of points that have the same slope d. a pair of points whose slope is undefined. Homework: Pg. 311‐312 # 7,8, 10‐12, 13abc, & 14abc        317‐318 # 7abcd, 8bdef, 9, 10,  4