Your SlideShare is downloading. ×
4 7 Notes B
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

4 7 Notes B

232
views

Published on

Published in: Technology

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
232
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1.      Day 2:           Opener Think back: Complete the  following problem on a  math raffle ticket. Good Luck! 1. Write the equation of the line that is parallel to x = ‐6 and  passes through the point (3,10). 1
  • 2. Homework Questions: 2
  • 3. 3
  • 4. 4
  • 5.      Section 4.7  Jiffy Graphs TOPIC ONE (cont.) Solve your given equation for y. Information from  Equations Think back: Are these equations equivalent?  How do you  know? Since they are equivalent then they should all be the  same line! This means they should all have the same    __________, ________________, and ___________. It's Your Turn! Complete the following  1. What is the slope of line l ?  4 questions with your  partner.(5 minutes) 2. Where does l cross the y‐axis? 3. Where does l cross the x‐axis? 4. Which equation for l makes it easiest to see that the point  (5,3) is on the line?  Explain. 5
  • 6. Linear Equation Forms Point‐Slope Form (IYT # 1 & 4): •   •   Slope‐Intercept Form (IYT # 1 & 2): •   •   Standard Form (IYT # 3): •   •   6
  • 7. TOPIC TWO We can use the different forms of linear equations that we  Writing equations of  learned today to write the equation of a line in a jiffy! lines using the  different forms. Given slope and through  (10, ‐3) with slope 7 the given point: (Ex. #1) Step 1: Substitute the given information into point‐slope form. Step 2: Simplify to slope‐intercept form (solve for y). Given 2 points: (Ex. # 2) (0,7) and (‐4,9) Step 1: Find the slope between these 2 points. Step 2: Substitute one of the points and the slope into point‐ slope form. Step 3: Simplify to slope‐intercept form (solve for y). 7
  • 8. TOPIC THREE Think back: How did we graph equations last chapter? Jiffy Graphing We are going to use the forms of linear equations to help us  graph in a jiffy! Using Point‐Slope  Graph y+2 = ‐3(x+1). Form: (Ex. # 3) Step 1: Plot the given point. Step 2: Use the slope to  plot two more points. Step 3: Connect all three  points with a line. Using Slope‐Intercept  Graph y = 1.75x ‐1. Form: (Ex.#4) Step 1: Plot your  y‐intercept. Step 2: Use the slope to  plot two more points. Step 3: Connect all three  points with a line. 8
  • 9. Exit Slip: 1.) Think about how you might graph the equation of a line  given to you in standard form.  Write down what your method  would be on a half‐sheet of paper and turn it in before you  leave. Think back: What information can  you easily get from  standard form?        OR Can you change it to an  equivalent form? 2.) Graph 3x+4y = 12 using your method. 9
  • 10. 10