Opener:               1.) Sketch a graph of the (x, y) coordinates that satisfy 
                      the equation.  What...
Homework 
Questions:




             2
12/9 & 12/10:    3.12 Graphing by Plotting

Launch:               How do you graph the equation y = x2 ‐ 4x + 3?




Open ...
Minds in Action:   1.) How is this equation  different from 2x + 3y = 12, 
                   which we worked with last cl...
Interpreting the    What values of x make y = 0?
Equations of 
Graphs:




                    What values of x make y = 3...
Ms. Betzel says....   • One partner from every partnership should take out 
                      a sheet of paper.

     ...
Check Point:        Upon my cue, hold up the response card with the letter 
Match That Graph!   whose equation matches the...
3.13    Intersection of Graphs
Determining the        Graph y = x2 ‐ 1 and y = 3 on the same coordinate plane 
Intersectio...
Intersection Points: The points where two graphs cross are intersection 
                     points.

                   ...
Challenge Problem:   Earlier we graphed the equation  y = x2 ‐ 4x + 3, which 
                     Tony said looked like a...
Exit Slip:          The graphs of y = x and y = 1000 ‐ x  intersect at one 
                    point.  Explain why each p...
Homework:   Pg. 263 # 4, 7, 9‐ 10 & 12‐13
            Pg. 267 # 6‐ 10




                                            12
13
14
15
16
17
18
19
Upcoming SlideShare
Loading in...5
×

3.12 3.13 Notes B

213

Published on

Published in: Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
213
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Transcript of "3.12 3.13 Notes B"

  1. 1. Opener: 1.) Sketch a graph of the (x, y) coordinates that satisfy  the equation.  What shape is the graph? x + y = 1 Be ready to share  your ideas by 1:30. 2.) Write the point‐tester equation for  a vertical line  that passes through point (2, 4). 1
  2. 2. Homework  Questions: 2
  3. 3. 12/9 & 12/10:    3.12 Graphing by Plotting Launch: How do you graph the equation y = x2 ‐ 4x + 3? Open your books to  Tony: page 258. Sasha: Narrator: Everyone else: Follow along carefully and be prepared  to answer questions about the reading. 3
  4. 4. Minds in Action: 1.) How is this equation  different from 2x + 3y = 12,  which we worked with last class? 2.)Briefly summarize Tony and Sasha's method so far. 3.) Why did they choose the x values of 0 and ‐1? 4.) Do we have enough points to draw a line to  complete the graph? 5.) Write down a brief summary of the reading.  Be  sure to include at least two key ideas that you want to  remember. 4
  5. 5. Interpreting the  What values of x make y = 0? Equations of  Graphs: What values of x make y = 3? How do we know that this is how the graph is supposed  to look? How do we know that it shouldn't look like this? How could we double check that our original graph is  correct? When in doubt... Plot more points!!! 5
  6. 6. Ms. Betzel says.... • One partner from every partnership should take out  a sheet of paper. • Imagine your piece of paper is a coordinate plane. • In big letters, write A in the 1st quadrant, B in the 2nd,  C in the 3rd, and D in the 4th. • Crease and tear the paper along the x‐axis. • Give your partner the 3rd and 4th quadrants. • Crease and tear the paper along the y‐axis. 6
  7. 7. Check Point: Upon my cue, hold up the response card with the letter  Match That Graph! whose equation matches the given graph. Pg. 263 # 8 7
  8. 8. 3.13    Intersection of Graphs Determining the  Graph y = x2 ‐ 1 and y = 3 on the same coordinate plane  Intersection Points: using the method we've discussed. What two points can be found on both graphs? How would you test that your points are actually on  the graphs of both equations? 8
  9. 9. Intersection Points: The points where two graphs cross are intersection  points. • An intersection point of two graphs satisfies _______  of the corresponding equations. • If a point makes two equations true, then it is  an  ______________ _______ of the corresponding  graphs. 9
  10. 10. Challenge Problem: Earlier we graphed the equation  y = x2 ‐ 4x + 3, which  Tony said looked like a big smile. Give an equation with a graph that has the shape of a  big frown.  (*Hint: Recall our discussion with transformations). 10
  11. 11. Exit Slip: The graphs of y = x and y = 1000 ‐ x  intersect at one  point.  Explain why each point is not the intersection of  Please turn in the two graphs. worksheet before  you leave. a. (100, 25) b. ( ‐ 25, ‐ 25) 11
  12. 12. Homework: Pg. 263 # 4, 7, 9‐ 10 & 12‐13 Pg. 267 # 6‐ 10 12
  13. 13. 13
  14. 14. 14
  15. 15. 15
  16. 16. 16
  17. 17. 17
  18. 18. 18
  19. 19. 19

×