Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# 3.12 3.13 Notes A

278

Published on

Published in: Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
278
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
2
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

• 1. Opener: 1.) Sketch a graph of the (x, y) coordinates that satisfy  the equation.  What shape is the graph? x + y = 1 Be ready to share  your ideas by 1:30. 2.) Write the point‐tester equation for  a vertical line that  passes through point (2, 4). 1
• 2. Homework  Questions: 2
• 3. 12/9 & 12/10:    3.12 Graphing by Plotting Launch: How do you graph the equation y = x2 ‐ 4x + 3? Open your books to  Tony: page 258. Sasha: Narrator: Everyone else: Follow along carefully and be prepared  to answer questions about the reading. 3
• 4. Minds in Action: 1.) How is this equation  different from 2x + 3y = 12,  which we worked with last class? 2.)Briefly summarize Tony and Sasha's method so far. 3.) Why did they choose the x values of 0 and ‐1? 4.) Do we have enough points to draw a line to  complete the graph? 5.) Write down a brief summary of the reading.  Be  sure to include at least two key ideas that you want to  remember. 4
• 5. Interpreting the  What values of x make y = 0? Equations of  Graphs: What values of x make y = 3? How do we know that this is how the graph is supposed  to look? How do we know that it shouldn't look like this? How could we double check that our original graph is  correct? When in doubt... Plot more points!!! 5
• 6. Ms. Betzel says.... • One partner from every partnership should take out  a sheet of paper. • Imagine your piece of paper is a coordinate plane. • In big letters, write A in the 1st quadrant, B in the 2nd,  C in the 3rd, and D in the 4th. • Crease and tear the paper along the x‐axis. • Give your partner the 3rd and 4th quadrants. • Crease and tear the paper along the y‐axis. 6
• 7. Check Point: Upon my cue, hold up the response card with the letter  Match That Graph! whose equation matches the given graph. Pg. 263 # 8 7
• 8. 3.13    Intersection of Graphs Determining the  Graph y = x2 ‐ 1 and y = 3 on the same coordinate plane  Intersection Points: using the method we've discussed. What two points can be found on both graphs? How would you test that your points are actually on  the graphs of both equations? 8
• 9. Intersection Points: The points where two graphs cross are intersection  points. • An intersection point of two graphs satisfies _______  of the corresponding equations. • If a point makes two equations true, then it is  an  ______________ _______ of the corresponding  graphs. 9
• 10. Challenge Problem: Earlier we graphed the equation  y = x2 ‐ 4x + 3, which  Tony said looked like a big smile. Give an equation with a graph that has the shape of a  big frown.  (*Hint: Recall our discussion with transformations). 10
• 11. Exit Slip: The graphs of y = x and y = 1000 ‐ x  intersect at one  point.  Explain why each point is not the intersection of  Please turn in the two graphs. worksheet before  you leave. a. (100, 25) b. ( ‐ 25, ‐ 25) 11
• 12. Homework: Pg. 263 # 4, 7, 9‐ 10 & 12‐13 Pg. 267 # 6‐ 10 12
• 13. 13
• 14. 14
• 15. 15
• 16. 16
• 17. 17
• 18. 18
• 19. 19