Your SlideShare is downloading. ×
Study of series resonant converters
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Introducing the official SlideShare app

Stunning, full-screen experience for iPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Study of series resonant converters

964
views

Published on

Published in: Education, Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
964
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
48
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Study of Series Resonant Converters 5N280 :Mini Power Electronics , Q1 28th October,2010Mayur Sarode0730085Electrical engineering
  • 2. About the presentation… • Analysis/implementation of a series resonant converter Ramesh Orunganti and Fred C Lee , “ Resonant Power Processors, Part 1-State Plane Analysis”. • Simulations results from ADS agilent 2008 • SPA (State plane analysis) : derivation /explanation • Continuous /Discontinuous mode of conduction • ConclusionsElectrical Engineering 9-7-2012 PAGE 1
  • 3. Circuit Details and Design Methodology/ name of department 9-7-2012 PAGE 2
  • 4. What is SRC??? • SRC and switching losses • ZVS and ZCS mode of switchingElectrical Engineering 9-7-2012 PAGE 3
  • 5. Circuit Details (1)Electrical Engineering 9-7-2012 PAGE 4
  • 6. Circuit details (2)Electrical Engineering 9-7-2012 PAGE 5
  • 7. The SRC design SRC ~ 100 volt buck converter Mode of operation Range Design of resonant tank CCM1 ω0/2<ω<ω0 6.2 KHz to 12.58 KHz 1 fr  = 5KHz 2 L1C1 DCM ω<ω0/2 ω<6.2 KHz CCM2 ω>ω0 ω>6.2 KHz Design of half bridge f s •Switching frequency of half bridge Gate peak to peak= 160 volt •Transistor biasing : operating in saturation region h fe  20 Ic max  15 A Ic h fe  Ib The base resistance was calculated to be 215 ΩElectrical Engineering 9-7-2012 PAGE 6
  • 8. The State Plane Analysis/ name of department 9-7-2012 PAGE 7
  • 9. State Plane Analysis (1) How to construct a State Plane? • Identify the state variables /sources • Determine the initial conditions of the state variables • Form a 2nd order differential equation matrix • Transform to time domain • Represent as a equation of a circle (parameterized ) • No. of circle on state planes~~ no of conduction states • Circle or a semi circle???Electrical Engineering 9-7-2012 PAGE 8
  • 10. State Plane Analysis • Sinusoidal approximations Vs state Plane • What is “State” and “Plane” • How is it useful? 1. Tank energy 2. Operational sequence 3. Boundary conditions 4. Time elapsed/ name of department 9-7-2012 PAGE 9
  • 11. State Space Analysis (2) iL Vc  C v  vc IL  e L 0 1 / C  v  0  Vc     1 0    1  VE c  I       L    L  iL   LElectrical Engineering 9-7-2012 PAGE 10
  • 12. State Space Analysis (3) Class of differential equations General solution L c1 Z iL   sin( (t  t0 ))  c2 cos( (t  t0 )) C Z 1 vc  VE  c1 sin( (t  t0 ))  Z * c2 cos( (t  t0 ))  LC ω is the eigen value c1 and c2 are found from initial conditions iL / t t0  I LO vC / t t0  VCOElectrical Engineering 9-7-2012 PAGE 11
  • 13. State Space Analysis (4) • After normalization •Now to the state plane iLN  a sin  center at (0,VEN ) vCN  a cos Electrical Engineering 9-7-2012 PAGE 12
  • 14. Continuous Conduction Mode/ name of department 9-7-2012 PAGE 13
  • 15. CCM ( below resonance) • ZCS switching 0<t<t1 , Q1 t1<t<t2, D1 For the Q1 state at t=0 I LO  0.715 A VCO  81.65volt t2<t<t3, Q2 t3<t<t4,D2 For the D1 state at t=t1 I LO  0 A VCO  120.8volt For the Q2 state at t=t2 I LO  0.6932 A VCO  88.2volt For the Q2 state at t=t3 I LO  0.004696 A VCO  91.2voltElectrical Engineering 9-7-2012 PAGE 14
  • 16. Simulation Results (1) • Inductor Current • Gate pulse Ts=200μ sec 100 100 80 vg1_1-vg1_2 80 60 60 vg2, V 40 40 20 20 0 0.0 0.2 0.4 0.6 0.8 1.0 0 0.0 0.2 0.4 0.6 0.8 1.0 time, msec time, msecElectrical Engineering 9-7-2012 PAGE 15
  • 17. Simulation Results (2) • Capacitor Voltage m1 indep(m1)= 4.646E-4 • Output Current 14 plot_vs(y,time)=4.187 12 10 I_Probe2.i, A 8 6 y m1 4 2 0 -2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 time, msecElectrical Engineering 9-7-2012 PAGE 16
  • 18. CCM (above resonance) 20 18 16 14 •ZVS switching 12 10 I_Probe3.i, A vg1_1-vg1_2 8 • D1->Q1->D2->Q2 6 4 2 0 •S1 found by equating Q1 and D2 -2 -4 -6 • S2 found by equating Q2 and D1 -8 -10 -12 -14 -16 -18 -20 Ts =50 μ sec 0 20 40 60 80 100 120 140 160 180 200 15 time, usec 10 I_Probe2.i, A Q1 D2 5 0 D1 Q2 -5 0 20 40 60 80 100 120 140 160 180 200 time, usecElectrical Engineering 9-7-2012 PAGE 17
  • 19. Discontinuous Conduction mode/ name of department 9-7-2012 PAGE 18
  • 20. DCM Von=0 0 Von=0 • Switching frequency s  2 • Conduction mode: Q1->D1->X->Q2->D2 • Low switching losses • Large transients Ts= 450 μ sec Von=1 Von=1Electrical Engineering 9-7-2012 PAGE 19
  • 21. Simulations Results (1) 20 18 16 • Inductor current 14 12 vL  vc 10 I_Probe3.i, A 8 vg1_1-vg1_2 6 4 2 0 -2 -4 -6 -8 -10 -12 -14 -16 -18 -20 0.0 0.2 0.4 0.6 0.8 1.0 time, msec 150 100 • Capacitor voltage 50 vc2-vc1 0 -50 -100 -150 0.0 0.2 0.4 0.6 0.8 1.0 time, msecElectrical Engineering 9-7-2012 PAGE 20
  • 22. Simulations Results (2) 14 12 10 I_Probe2.i, A • Output Current 8 6 4 2 0 -2 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 time, msecElectrical Engineering 9-7-2012 PAGE 21
  • 23. ASTD-IC •Conduction sequence Q1->Q2->D1->D2 •Time ta is criticalElectrical Engineering 9-7-2012 PAGE 22
  • 24. Conclusions • CCM/DCM boundary frequency less than the calculated • Transients in initial cycles • ASD-TIC implementation/ name of department 9-7-2012 PAGE 23
  • 25. Appendix(1) • Matlab code • %creating a state space diagram of a series resonant converter • %vs=100 vo is output voltage • % for switch when Q1 is on • %plotting values from ADS • data_iln= importdata(C:Documents and SettingsroosterMy DocumentsMATLABIln.txt); • data_vcn= importdata(C:Documents and SettingsroosterMy DocumentsMATLABVcn.txt); • data_vcn=data_vcn; • data_iln=data_iln; • subplot(2,2,1); • plot(data_iln(1,:),data_iln(2,:)); • grid on; • subplot(2,2,2) • plot(data_vcn(1,:),data_vcn(2,:)); • grid on; • L=80e-6; • C=2e-6;/ name of department 9-7-2012 PAGE 24
  • 26. Appendix(2) • Vs=100; • Vo=10; • Ilo=0.715; • Vco=120.8; • Zo=(L/C)^0.5; • w=1/(L*C)^0.5; • In=Vs/Zo; • Vn=Vs; • %Ven=Vs/Vn-Vo/Vn; • Ven=1-Vo/Vn; • Ilon=Ilo/In; • Vcon=Vco/Vn; • rad=Ilon^2+(Vcon-Ven)^2; • rad=rad^0.5; • for i=1:143 • q1_il(1,i)=data_iln(2,431+i)/In; • q1_vc(1,i)=data_vcn(2,431+i)/Vn; • theta(1,i)=atand((-q1_il(1,i)/(q1_vc(1,i)-Ven)))-atand((-Ilon/(Vcon-Ven))); • end • subplot(2,2,3) • b=rad*cosd(theta); • a=rad*sind(theta)+Ven; • plot(a,b); • hold on; • xlabel(Vcn); • ylabel(Iln); • %axis([-4 4 -2 2]); • grid on;/ name of department 9-7-2012 PAGE 25
  • 27. References [1] R. Oruganti and F.C. Lee, “Resonant Power Processors, Part 1: State Plane Analysis,” IEEE Transactions on Industry Application, vol. IA-21, Nov/Dec 1985, pp. 1453-1460. [2] F. C. Schwarz, "An improved method of resonant current pulse modulation for power converters, " IEEE Power Electronics Specialists Conf. Rec., 1975, pp. 194-204. [3] Lecture Notes 5LN280 , Tu/E [4] Lecture notes of University of Colorado, Bolder , ecee.colorado.edu/~ecen5817/notes/ch4.pdf/ name of department 9-7-2012 PAGE 26