Android based Object Detection and Classification:  Modeling a Child's Learning of What's Hot and Cold Matthew L Weber   I...
Overview:  Goals <ul><li>- Repeats existing research related to the use of Self-Organizing Maps (SOM) for object recognition
- Introduces a new resource constrained platform for the experiment </li></ul>
Overview:  Experiment <ul><li>Hardware </li><ul><li>- Android Phone
- Arduino with Ethernet sheild  & Sensors </li></ul><li>Software </li><ul><li>- Android port of OpenCV
- JAVA based Self-Organizing Map  (SOM) </li></ul></ul>
Overview:  Algorithms <ul><li>- OpenCV PC test app (C/C++) </li><ul><li>- Histogram and Pixel Average (Texture) </li></ul>...
Overview: User Interface
Results:  PC Test Case  <ul><li>- Testing number of SOM learning iterations </li><ul><li>5 iterations 100 iterations </li>...
Results:  Android Test Case <ul><li>- Testing learning new objects </li></ul>(Shown are 100 images in a 10x10 SOM lattice)
Upcoming SlideShare
Loading in...5
×

Android based Object Detection and Classification

3,163

Published on

Modeling a Child's Learning of What's Hot and Cold. Iowa State University – CPRE585x Spring 2011.
See this link to a YouTube video for a demo of the application developed.

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
3,163
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
43
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide
  • Test notes....
  • Android based Object Detection and Classification

    1. 1. Android based Object Detection and Classification: Modeling a Child's Learning of What's Hot and Cold Matthew L Weber Iowa State University – CPRE585x Spring 2011
    2. 2. Overview: Goals <ul><li>- Repeats existing research related to the use of Self-Organizing Maps (SOM) for object recognition
    3. 3. - Introduces a new resource constrained platform for the experiment </li></ul>
    4. 4. Overview: Experiment <ul><li>Hardware </li><ul><li>- Android Phone
    5. 5. - Arduino with Ethernet sheild & Sensors </li></ul><li>Software </li><ul><li>- Android port of OpenCV
    6. 6. - JAVA based Self-Organizing Map (SOM) </li></ul></ul>
    7. 7. Overview: Algorithms <ul><li>- OpenCV PC test app (C/C++) </li><ul><li>- Histogram and Pixel Average (Texture) </li></ul><li>- SOM PC test app (JAVA) </li></ul>
    8. 8. Overview: User Interface
    9. 9. Results: PC Test Case <ul><li>- Testing number of SOM learning iterations </li><ul><li>5 iterations 100 iterations </li></ul></ul>(Shown are 100 images in a 10x10 SOM lattice)
    10. 10. Results: Android Test Case <ul><li>- Testing learning new objects </li></ul>(Shown are 100 images in a 10x10 SOM lattice)
    11. 11. Results: Android Test Case <ul><li>- Testing learning progression </li></ul>
    12. 12. Future Research <ul><li>- SOM scalability and storage limitations
    13. 13. - GPU acceleration of matrix math in SOM
    14. 14. - SOM learning bias
    15. 15. - (Specific to this project) Code optimizations for floating point </li></ul>
    16. 16. Resources <ul><li>- Website
    17. 17. http://code.google.com/p/mlw-proj/wiki/CPRE585x </li><ul><li>- Links to research papers and source code </li></ul><li>- Demo Video
    18. 18. http://www.youtube.com/watch?v=Iv1sRhjQmR0
    19. 19. - Questions/Comments </li><ul><li>Email (mlweber at iastate.edu) </li></ul></ul>
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×